

Surface Water Drainage Strategy

Land at Llanellen Court, Llanellen, Monmouthshire

On Behalf of

Trustees of Morspan Pension Scheme Ltd

Quality Management

Prepared by:	Tom Paltridge BSc MSc FGS	AL		
Reviewed and Authorised by:	Chris Betts BSc MSc CGeol FGS	ChotalsSells		
Calculations Approved by:	Chris Betts BSc MSc CGeol FGS	Christylas Belts		
Date:	December 2023			
Version:	1			
Project Number:	HYG953			
Document Reference:	HYG953 R 231207 TP Llanellen SuDS Strategy			
Document File Path:	https://hydrogeoltd- my.sharepoint.com/personal/mike_hydrogeo_co_uk/Documents/Projects/HYG953 P Llanellen & Prioress Mill Lane Lane/Reports/Llanellen North Site/Final/HYG953 R 231207 TP Llanellen SuDS Strategy.docx			

COPYRIGHT © Hydrogeo

This report has been produced by Hydrogeo within the terms of the contract with the client and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

Hydrogeo Ltd, Unit 4 Waddington House, Llanover Business Centre, Llanover, Monmouthshire NP7 5NT T: 01873 856813

E: chris@hydrogeo.co.uk W: www.hydrogeo.co.uk

i

Contents

Qu	ality Management	i
Со	ntents	ii
1	Introduction	7
1.1	Background	7
1.2	Surface Water Discharge Planning Requirements	7
2	Location & Development Description	8
2.1	Site Location	8
2.2	Existing Development	9
2.3	Potential Development	9
2.4	Geology	.10
2.5	Hydrogeology	.10
2.6	Catchment Hydrology	.11
2.7	Flooding	.12
2.8	Sensitive Land Uses	.12
2.9	Sewers	.12
3	Site Walkover	13
3.1	Introduction	.13
4	Surface Water Drainage	15
4.1	Introduction	.15
5	S1: Surface Water Run-Off Destination	16
5.1	Introduction	.16
5.2	Collect for re-use	.16
5.3	Infiltrate to ground	.16
5.4	Discharge to a surface water body	.16
5.5	Discharge to sewers	.17
6	S2: Surface Water Run-Off Hydraulic Control	18

6.1	Introduction	18
6.2	Site Areas	18
6.3	Surface Water Run-Off Rates	19
6.4	Surface Water Attenuation Estimation	19
6.5	Drainage Strategy	20
6.6	Interception	20
6.7	Designing for Local Drainage System Failure/Design Exceedance	20
7	S3: Water Quality	22
8	S4 & S5: Amenity and Biodiversity	24
8.1	Amenity and Biodiversity Benefits	24
9	S6: Designing Drainage for Construction, Operation, Maintenance ar	nd
Str	uctural Integrity	25
9.1	Introduction	25
9.2	SuDS Maintenance and Management	25
9.3	Design Life	25
10	Conclusion	26
10.	1 Introduction	26
10.	2 Surface Water Drainage	26

Tables and Figures

Tables

Table 3-1 Site walkover photographs	13
Table 6-1 – Site features and surfaces	19
Table 7-1 - Potential pollution source and hazard indices	22
Table 7-2 – Mitigation indices for SuDS components.	23
Figures	
Figure 2-1 Site Location	8
Figure 2-2 Site boundary	9

Drawing 1 Surface water features plan

Drawing 2 Flooding hazard plan

Drawing 3 Photo location plan

Drawing 4 Surface Water Drainage Plan

Appendices

Appendix A Proposed site layout plan

Appendix B DCWW sewer plan

Appendix C Causeway Flow Calculations

Appendix D Drainage Survey and Topographic Survey

Appendix E Llanellen Access Road Drainage Statement (2017)

1 Introduction

1.1 Background

Hydrogeo Limited (Hydrogeo) have been commissioned by the Trustees of Morspan Pension Scheme Ltd (the Client) to undertake a Surface Water Drainage Strategy Report for a parcel of land at Llanellen Court, Llanellen, Monmouthshire (the Site).

This report has been prepared to promote the Site for inclusion in the Monmouthshire County Council (MCC) Local Development Plan (LDP) for residential land use. In order for the Site to be subject to a successful future planning application the surface water discharges would need to meet current planning requirements.

1.2 Surface Water Discharge Planning Requirements

A development of more than 100 square metres would need a Sustainable Drainage System (SuDS) designed, submitted to and approved by the Monmouthshire Council SuDS Approving Body (SAB) in order to gain full planning approval.

A Sustainable Drainage System is designed to replicate, as closely as possible, the natural drainage from a site (before development) to ensure that the flood risk downstream of that site does not increase as a result of the land being developed.

SuDS can also significantly improve the quality of water leaving a site and can enhance the amenity and biodiversity that a site has to offer.

The implications of the SuDS requirements for development at the Site are a key focus of this report, and are discussed in greater detail in Section 4, with discussion of the site-specific options included in Section 6.

2 Location & Development Description

2.1 Site Location

The Site is located on land off the A4042 at Llanellen Court, Llanellen, Monmouthshire, NP7 9HP. The National Grid Reference for the Site is 330317, 210655.

The location of the Site has been shown in Figure 2-1 and the Site boundary has been shown in Figure 2-2.

Figure 2-1 Site Location

© Crown copyright reserved, Licence No. 100047852

Figure 2-2 Site boundary

© Microsoft 2021

2.2 Existing Development

The Site comprises an undeveloped parcel of land at Llanellen Court, as shown in Figure 2-2. The parcel of land has an area of approximately 3.5ha and is currently used for pasture.

The land falls towards the north east with a break in slope halfway to a level area at the northern half. The maximum elevation is approximately 64m above ordnance datum (mAOD) along the south west boundary, and the minimum elevation is approximately 53mAOD across the flat northern part.

The land falls within a wider ownership boundary which includes a number of former farming buildings, residential buildings and dwellings.

2.3 Potential Development

The land at the Site is a LDP candidate sites for MCC, with a proposed residential end use. Planning permission for development at the Site has not been sought yet.

The development layout plan for the site is attached at Appendix A.

2.4 Geology

British Geological Survey (BGS) data have been used to describe the geology below the Site.

Artificial Geology

No artificial geology is indicated to be present below the Site on BGS mapping.

Superficial Geology

Superficial deposits are present at the Site and comprise mainly Glaciofluvial Sheet Deposits. These are sand and gravel deposits formed by glacial processes during the Quaternary Period within the last 2 million years.

Superficial deposits at the flat northern part of the northern parcel of land are marked as Alluvium: clay, silt, sand and gravel deposited in a fluvial environment during the Quaternary Period within the last 2 million years.

Bedrock Geology

BGS mapping indicates that the bedrock geology present at the Site comprises the St. Maughans Formation, which consists of fluvially derived interbedded sandstone and argillaceous rocks dating from the Devonian Period, approximately 393 to 419 million years ago.

2.5 Hydrogeology

The following aquifer classifications have been assigned by NRW to the superficial and bedrock geology below the Site:

- Groundwater vulnerability, superficial geology: Medium vulnerability, secondary aquifer.
- Groundwater vulnerability, bedrock geology: Medium vulnerability, secondary aquifer.
- Aguifer designation, superficial geology: Secondary A.
- Aquifer designation, bedrock geology: Secondary A.

Secondary A Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Soil Type

Information from the National Soil Resource Institute identifies the Site as being situated on Soilscape 6: freely draining slightly acid loamy soils.

2.6 Catchment Hydrology

Available Ordnance Survey (OS) mapping has been used to determine the surface water features in the vicinity of the Ownership Site. (Drawing 1)

A site walkover was conducted by Hydrogeo on the 30th July 2021 in order to identify surface water features and gain an understanding of the general site layout relative to site drainage. The site walkover is discussed in Section3.

No surface water features are present directly within the boundary of the Site. OS mapping indicates that a spring is present 210m south west of the northern parcel of land. The spring feeds a small pond to the west of residential buildings within the site ownership boundary; the pond outfall is then culverted below an area of woodland down slope to the north east, in the direction of the Site.

The culverted watercourse has been surveyed by CCTV and dye tracing by PM Consultants (Appendix D)

The culvert is concrete and starts at a diameter of 225mm, then increases to 300mm after MH1 where the private surface water sewer from Llanellen Village joins. The culvert leaves the land ownership in the north and it is understood that there is another access manhole on the field to the north east. The OS map shows a short section of open watercourse in the north of the field (Drawing 1), which then passes beneath the B4269 and the A4042 prior to another open section which discharges to the River Usk south of the road bridge. It is assumed that this is the route of the culverted watercourse, which can be surveyed further and cleaned / reinstated where required by the landowners under Riparian Rights.

A plan of the surface water features in the vicinity of the Site has been shown on Drawing 1.

2.7 Flooding

NRW data have been used to summarise the flood hazards at the Site. A plan of the flooding hazards has been shown on Drawing 2.

Flooding from Rivers and Sea

- The Site is not at risk of flooding from the sea.
- The Site is not at risk of flooding from rivers.

Flooding from Surface Water and Small Watercourses

- The Site is not at risk of flooding from small watercourses.
- A small area at the north eastern corner of the northern parcel of land at the Site is at high risk of surface water flooding.
- A small strip of land at the south western corner of the southern parcel of land at the Site is at low risk of surface water flooding.

2.8 Sensitive Land Uses

NRW data has been used to determine whether any sensitive land uses are present in the vicinity of the Site.

A list of sensitive land uses has been shown below:

SSSI: River Usk (Lower Usk) located 0.3km NE

SAC: River Usk located 0.3km NE

AONB: None within 2km
 Local Nature Reserve: None within 2km

National Park: Brecon Beacons NP located 0.3km W

■ RAMSAR: None within 2km

2.9 Sewers

Sewer plans have been requested from Dŵr Cymru Welsh Water (DCWW); the sewer plan and DCWW correspondence has been attached at Appendix B. A private sewer from Llanellen village discharges to the culverted watercourse which crosses the site.

3 Site Walkover

3.1 Introduction

A site walkover was conducted by Hydrogeo in order to identify surface water features and gain an understanding of the general site layout relevant to drainage.

Photographs taken during the site walkover have been shown in Table 3-1. A plan of the photograph locations has been shown in Drawing 3.

Table 3-1 Site walkover photographs

Reference	Description	Photograph
1	Looking north from the southern boundary of the northern parcel of land.	
2	Looking north from the south western corner of the northern parcel of land.	

Reference	Description	Photograph
3	Looking east from the western boundary of the northern parcel of land. The break of slope to the flat section of this area of the Site is visible.	
4	Looking south from the north eastern corner of the northern parcel of land.	
5	Culvert conveying a watercourse towards the north east. Entrance to the culvert is located outside site boundary but within the Client ownership boundary. (drain survey from this location undertaken)	

4 Surface Water Drainage

4.1 Introduction

This drainage statement complies with the principles of SuDS in Wales presented in the 'Statutory Standards for Sustainable Drainage Systems – Designing, constructing, operating and maintaining surface water drainage systems'.

The six standards that need to be met are as follows:

- S1 Surface water run-off destination
- S2 Surface water runoff hydraulic control
- S3 Water Quality
- S4 Amenity
- S5 Biodiversity
- S6 Designing drainage for construction, operation, maintenance and structural integrity.

A sustainable drainage system is designed to replicate, as closely as possible, the natural drainage from a site (before development) to ensure that the flood risk downstream of the Site does not increase as a result of the land being developed. SuDS can also significantly improve the quality of water leaving a site and can enhance the amenity and biodiversity that a site has to offer.

Projections of future climate change in the UK, indicate more frequent, short-duration, high intensity rainfall and more frequent periods of long duration rainfall. As such, the recommended national precautionary sensitivity range for peak rainfall intensity is 40%.

5 S1: Surface Water Run-Off Destination

5.1 Introduction

As part of the SuDS Standards the management of run-off from developments should be prioritised as to the choice of discharge destination. The priority hierarchy is listed below:

- 1. Collect for re-use;
- 2. Infiltrate to ground;
- 3. Discharge to a surface water body;
- 4. Discharge to a surface water sewer/highway drain;
- 5. Discharge to a combined sewer.

5.2 Collect for re-use

The reuse of water from roofed areas to provide grey (non-potable) water for toilet flushing and washing can reduce storm run-off without the need for treatment or oil separators as the risk of spillage or contamination is low.

It is expected that there will be a demand for water at development for use in toilet flushing and potentially a washing machine, however the yield is expected to exceed demand. As such, rain water harvesting is unlikely to be a viable or cost-effective method of managing surface water run-off.

Small amounts of surface water run-off from the developed building roof can be collected and stored in water butts provided at each property for future use in the gardens.

5.3 Infiltrate to ground

Soakaway testing was undertaken on land directly adjacent to the site in 2017 to support the Access Road Drainage Statement (Appendix E). The test results provide an indication of the potential infiltration rates in the part of the site near the access road. Infiltration rates were measured between 4.39 x 10⁻⁵ m/s and 4.71 x 10⁻⁵ m/s. No groundwater was encountered in trial pits excavated to 2.7m depth. This does indicate that some infiltration SuDS techniques, such as soakaways could be included in the scheme as viable method of surface water discharge, following further testing.

5.4 Discharge to a surface water body

The small stream which passes beneath the site in the north in a culvert is considered to be a viable option for drainage discharge at the Site.

5.5 Discharge to sewers

A private surface water sewer flows onto the site from Llanellen village and discharges to the culverted watercourse. Due to the proximity of the existing culverted watercourse, discharge to sewers is not a required drainage option for the Site at this time.

6 S2: Surface Water Run-Off Hydraulic Control

6.1 Introduction

The objective of this drainage strategy is to ensure that a sustainable drainage solution can be achieved which reduces the peak discharge rate to manage and reduce the flood risk posed by the surface water run-off from the development of the Site. The drainage strategy takes into account the following principles.

- No increase in the volume or rate of surface water run-off from the development of the Site;
- No increase in flooding to people or property off-Site as a result of the development of the Site;
- The proposals take into account a 40% increase in rainfall intensity due to climate change during the next 100 years;
- The proposals take into account a 10% increase in impermeable surfaces as a result of urban creep.

6.2 Site Areas

The current Site areas have been calculated from satellite imagery and the Site visit, the end-Site areas have been calculated from the proposed layout plans given to Hydrogeo by the Client team and attached as Appendix A.

The total area of the development Site has been calculated to be approximately 34,000m². The Site is currently greenfield used primarily for grazing. The proposal is for a residential development with driveways, access roads, footpaths and soft landscaped areas. The roofs of the buildings and tarmac access road would be impermeable, however pavements, patios, driveways and footpaths would be constructed as permeable surfaces. The total impermeable area at the end-Site will have increased.

These Site areas are summarised in Table 6-1, and show that the area of impermeable surfaces on Site is planned to increase.

Table 6-1 - Site features and surfaces.

Feature	Current Area (m²)	Proposed Area (m²)	Permeability
Total Site	35,280	35,280	Mixed
Roofs	0.0	2,926	Impermeable
Garages	0.0	280	Impermeable
Access Road	0.0	1,675	Impermeable
External patios/paths	0.0	1,280	Permeable
Pavement/pathways/parking	0.0	3,375	Permeable
Grass/Soft Landscaping	35,280	25,744	Permeable

6.3 Surface Water Run-Off Rates

For discharge to a surface water body an analysis of the current surface water run-off rates from the Site is required to be made using the appropriate hydraulic modelling software.

As the Site is a greenfield site, the surface water run-off rate has been calculated Causeway Flow. The full calculations are attached as Appendix C.

6.4 Surface Water Attenuation Estimation

An estimation of surface water run-off volume is required to permit effective surface water management and prevent any increase in flood risk to off-Site receptors.

According to regulations, the sizing of surface water drainage features must be calculated based on the volume of surface water run-off during a 1 in 100-year rainfall event. The calculations must also take into account a 40% increase in future rainfall due to climate change, as well as a 10% increase in impermeable surfaces on Site due to urban creep. Site specific rainfall design data was obtained from the Flood Estimation Handbook (FEH) web service.

The surface water run-off storage volume has been calculated using Causeway Flow, and the full results from this tool are attached as Appendix C.

The tool calculates that a 1m deep attenuation basin would require a surface area of approximately 1800m².

6.5 Drainage Strategy

At this stage a detailed surface water drainage design has not been undertaken, however it is necessary to demonstrate that the surface water from the proposed development can be discharged safely and sustainably. The surface water drainage strategy at the Site will include the following:

- Interception, treatment and attenuation of surface water run-off;
- Restricted discharge from the Site, set to the greenfield 1 in 100-year run-off rate.

Interception, treatment and attenuation of the surface water run-off will be provided by the permeable paving surfaces, plot scale rain gardens and a grassy detention basin.

Outflow from the detention basin will be restricted via a flow control device. The outflow will then be transported via underground pipes to the northern part of the site to a new connection with the existing culverted watercourse within the ownership boundary.

The proposed surface water drainage layout within the development Site boundary is presented in Drawing 4.

6.6 Interception

The interception of the first 5mm of rainfall at the Site will be provided by a combination of the permeable surfaces, plot scale rain gardens and a grassy detention basin.

According to the Welsh standards, all permeable surfaces, whether lined or not, can be assumed to provide interception provided there is no additional area drained to them. The standards also state that rain gardens can provide interception where the impermeable surface area being drained is less than 5 times the vegetated surface area receiving the run-off.

Pedestrian areas and parking areas, will be permeable surfaces to provide interception. The run-off from the impermeable surfaces (roofs) will be directed through the permeable surfaces to the rain gardens to provide the interception. The permeable surfaces will be able to provide temporary storage for the surface water run-off, decreasing the required size of the attenuation feature.

6.7 Designing for Local Drainage System Failure/Design Exceedance

When considering residual risk, it is necessary to make predictions as to the impacts of a storm event that exceeds the design event, or the impact of a failure of the local drainage system. The drainage strategy applies a safe and sustainable approach to discharging

rainfall run-off from the Site and this reduces the risk of flooding. However, it is not possible to completely remove the risk. This section is therefore associated with the way the residual risk is managed.

As part of the drainage strategy, it must be demonstrated that the flooding of property would not occur in the event of local drainage system failure and/or design exceedance. It is not economically viable or sustainable to build a drainage system that can accommodate the most extreme events. Consequently, the capacity of the drainage system may be exceeded on rare occasions, with excess water flowing above ground.

The drainage components would be designed to accommodate the 1 in 100-year critical rainfall event plus an allowance for climate change and urban creep. Flows from an exceedance event (>1 in 100-year rainfall event) and/or component failure are expected to result in overtopping of the subbases. Any surface water run-off from the Site would be expected to flow east onto the public road and not towards any properties. The risk to the proposed development from flooding as a result of an exceedance event or system failure is negligible.

7 S3: Water Quality

The Simple Index Approach Tool from the SuDS Manual has been used to assess the pollution mitigation capacity of the proposed SuDS features at the Site.

The pollution hazard level of different surfacing types has been shown in, based on Table G3.1 of the Welsh statutory standards and Table 26.2 of the SuDS Manual. The development is proposed to contain residential roofs, property driveways and car parking spaces and a shared access road.

Table 7-1 - Potential pollution source and hazard indices.

Source	Hazard Level	Total Suspended Solids	Metals	Hydrocarbons
Residential roof	Very low risk	0.2	0.2	0.05
Low traffic roads/Residential driveways and car parking	Low risk	0.5	0.4	0.4

Note – The indices range from 0 (no pollution hazard for this contaminant type) to 1 (high pollution for this contaminant type).

It is considered that the Site falls under the "low risk" level of hazard.

In order to deliver adequate treatment, the SuDS components should have a total pollution mitigation index for each contaminant type that is equal to or greater than the pollution hazard index for that contaminant type. Where SuDS components are used in a sequential train, a factor of 0.5 must be applied to each subsequent feature to account for the reduced performance.

It is assumed that all surface water run-off will first go through the permeable paving before entering the rain garden, therefore the same mitigation will be applied to all rainfall, and the mitigation of the rain garden will have a factor of 0.5 applied.

The pollution mitigation for discharges to surface waters for the SuDS components are shown in Table 7-2, based on Table 26.3 of the SuDS Manual.

Table 7-2 – Mitigation indices for SuDS components.

Type of SuDS Component	Total Suspended Solids	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7
Rain Garden	0.8	0.8	0.8
Detention basin	0.5	0.5	0.6

Note – The indices range from 0 (no pollution mitigation for this contaminant type) to 1 (high pollution mitigation for this contaminant type).

The proposed SuDS features will be capable of mitigating any potential pollution from the surface water run-off before discharge to the local surface water course.

8 S4 & S5: Amenity and Biodiversity

8.1 Amenity and Biodiversity Benefits

The proposed development plans for the Site includes large areas of soft landscaping with the planting of native trees, native species hedgerows, residential lawns and public open space. These features will help support flora and fauna for the benefit of the development community, as well as providing air quality improvements in accordance with the SuDS Manual.

The proposed rain gardens to each individual dwelling plot will provide amenity and biodiversity benefits for the development as the vegetation will be native plants to help support the local flora and fauna.

9 S6: Designing Drainage for Construction, Operation, Maintenance and Structural Integrity

9.1 Introduction

The SuDS components have been designed for easy maintenance to comprise:

- Regular day-to-day care, such as regular land maintenance to control excessive vegetation growth and checking inlets where water enters the SuDS features;
- Occasional tasks, such as checking the SuDS features and removing any silt buildup:
- Remedial work, such as repairing damage where necessary.

9.2 SuDS Maintenance and Management

A management and maintenance plan will be developed as part of the full design application. A construction and phasing plan to mitigate impacts of surface water run-off during construction and provided details of development phases will be developed with the full design application.

It is proposed that SuDS devices are constructed toward the very end of the development in order to prevent damage or silt build-up of the components.

9.3 Design Life

The design life of the development is likely to exceed the design life of each of the SuDS components for the Site. During the routine inspections of any SuDS components, it may become apparent that they have reached the end of their functional lifetime. In the interest of sustainability, repairs should be the first choice of solution where possible. If this is not the case it will be necessary to undertake complete replacement of the component in question.

When undertaking maintenance, repairs or replacement, all engineering drawings used in the design, construction and installation of the SuDS components should be referred to for construction and specification details. This will help to ensure satisfactory performance of each of the SuDS components.

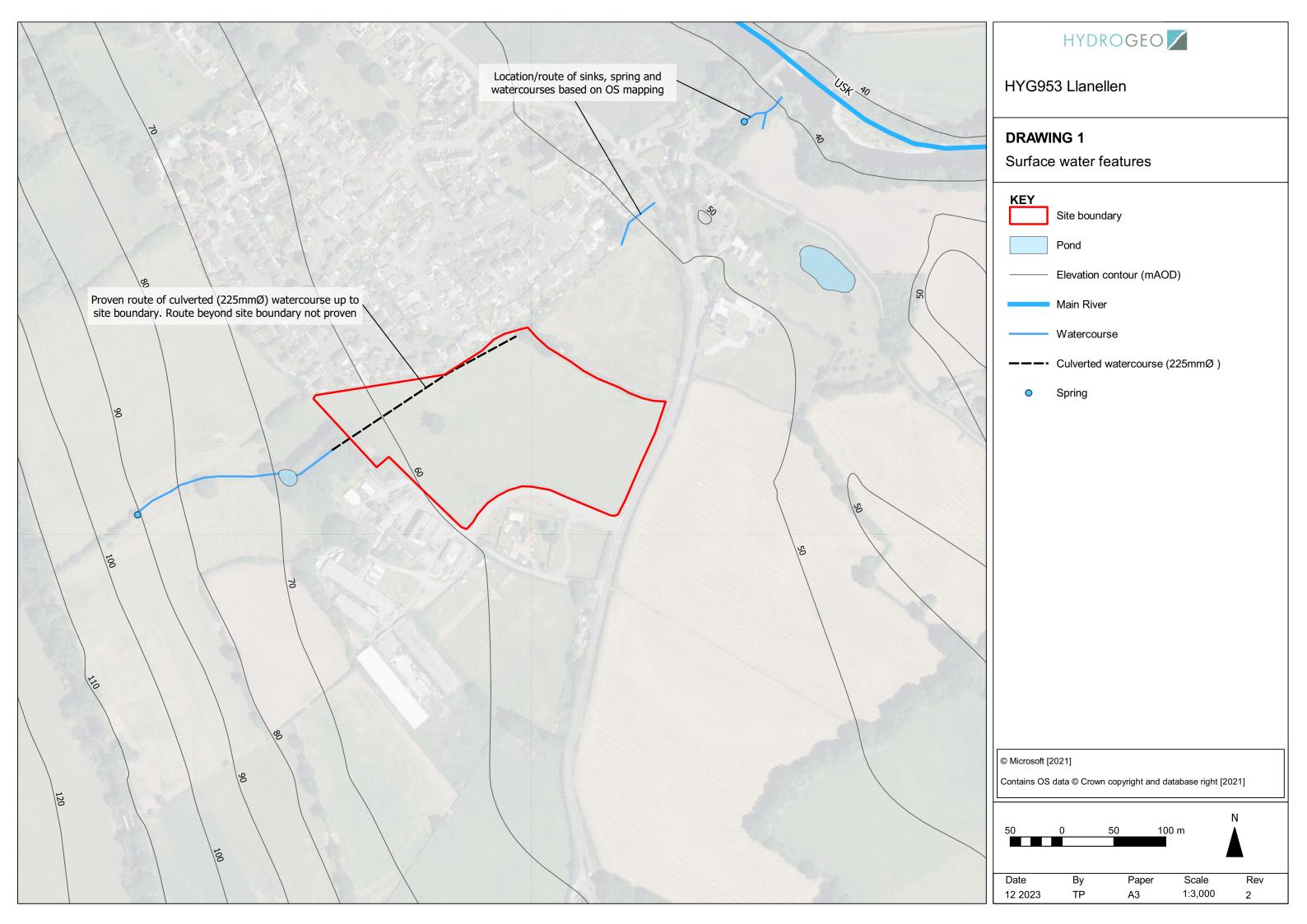
10 Conclusion

10.1 Introduction

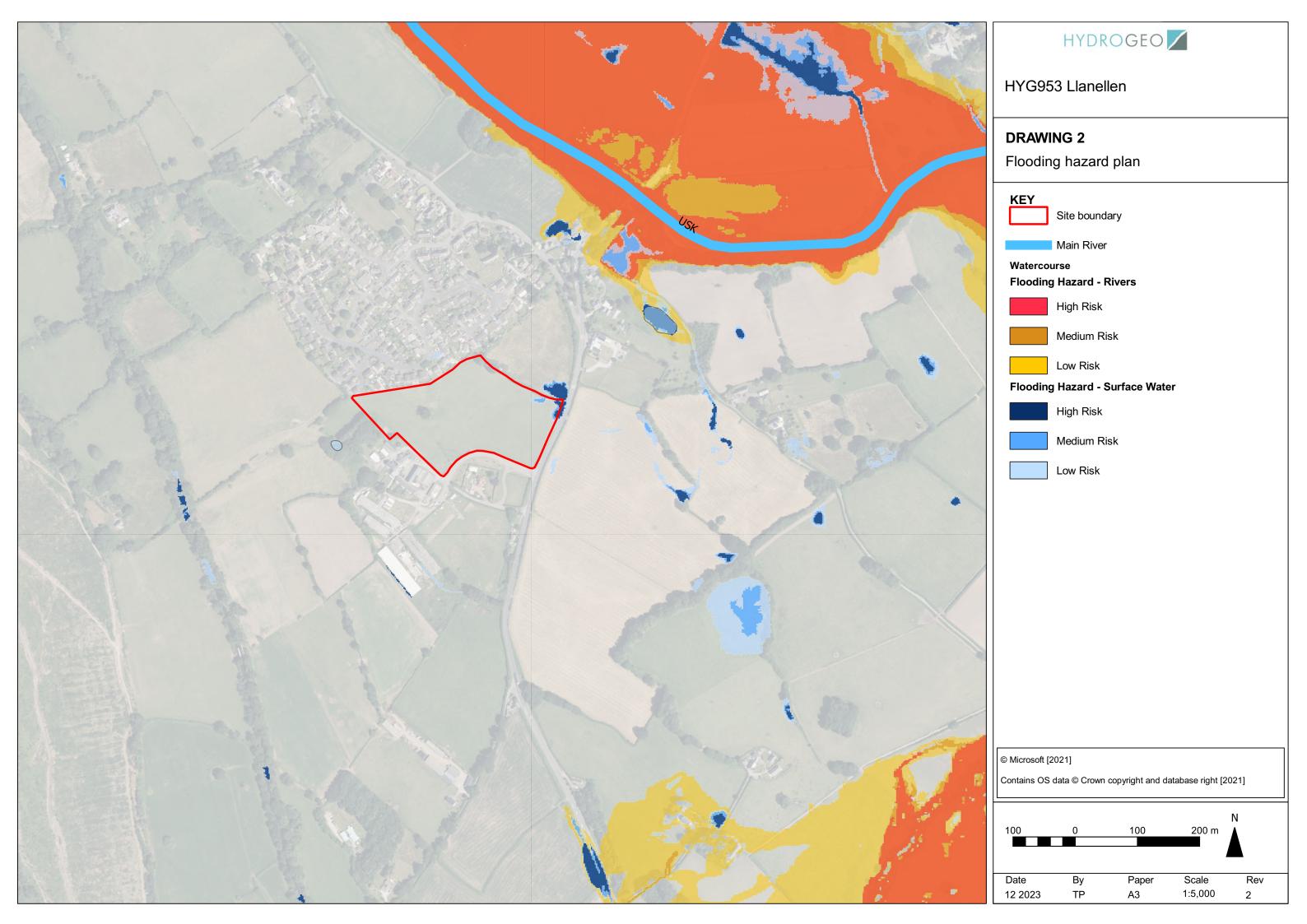
Hydrogeo Limited (Hydrogeo) have been commissioned by the Trustees of Morspan Pension Scheme Ltd (the Client) to undertake a Surface Water Drainage Strategy Report for a parcel of land at Llanellen Court, Llanellen, Monmouthshire (the Site).

This report has been prepared to promote the Site for inclusion in the Monmouthshire County Council (MCC) Local Development Plan (LDP) for residential land use. In order for the Site to be subject to a successful future planning application the surface water discharges would need to meet current planning requirements.

10.2 Surface Water Drainage


The surface water drainage strategy ensures that a sustainable drainage solution can be achieved which reduces the peak discharge rate to manage and reduce the flood risk posed by the surface water run-off from development at the Site.

At this stage a detailed drainage design has not been undertaken, however it is necessary to demonstrate that the surface water from the proposed development can be discharged safely and sustainably.


The proposed development will incorporate a number of linked SuDS features including permeable surfaces, plot scale rain gardens and a grassy detention basin. The scheme will capture and treat surface water run-off from the impermeable surfaces on the developed Site and will then release this stored water at a set rate into the existing culverted watercourse that passes through the site.

Surface water features plan

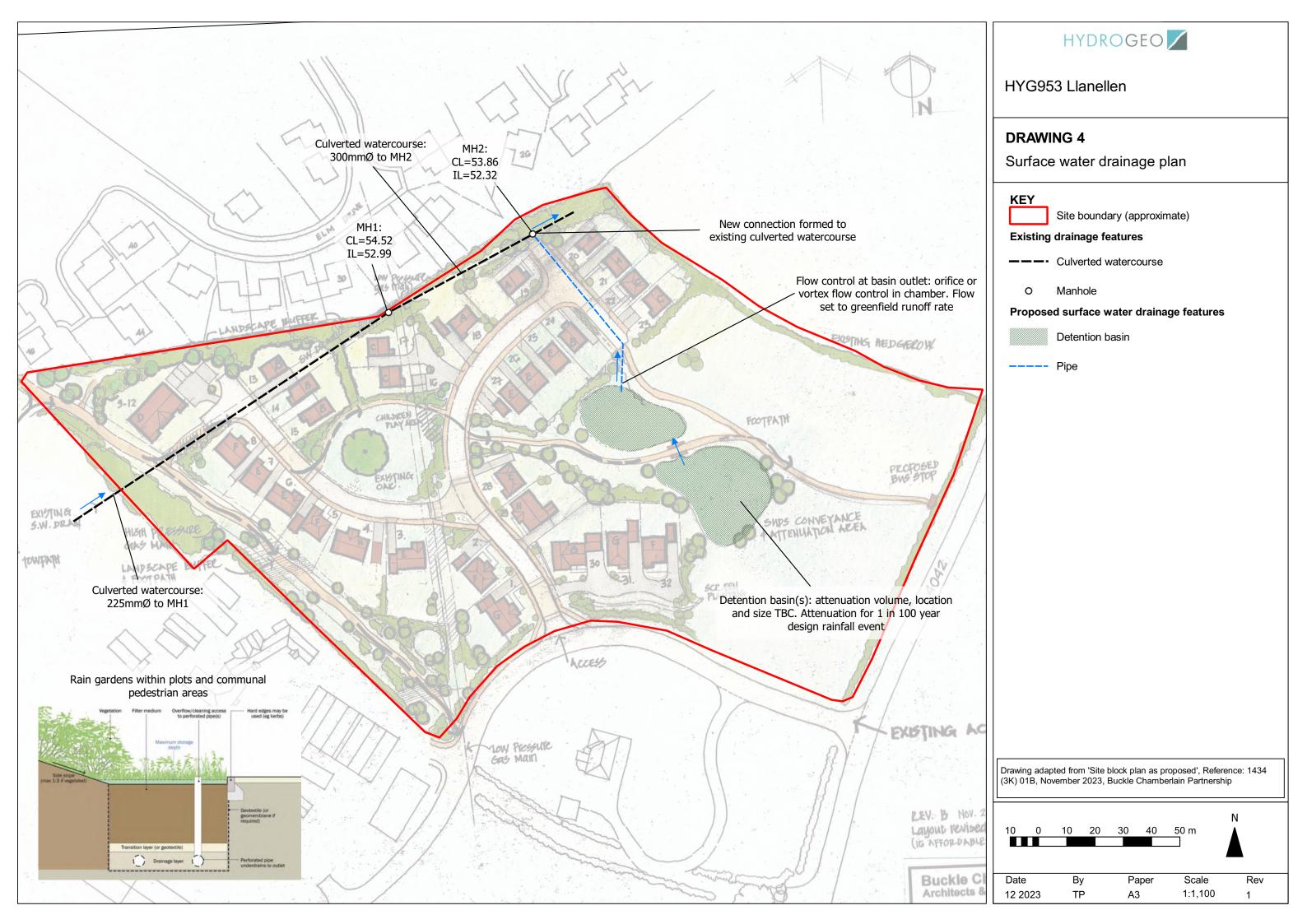
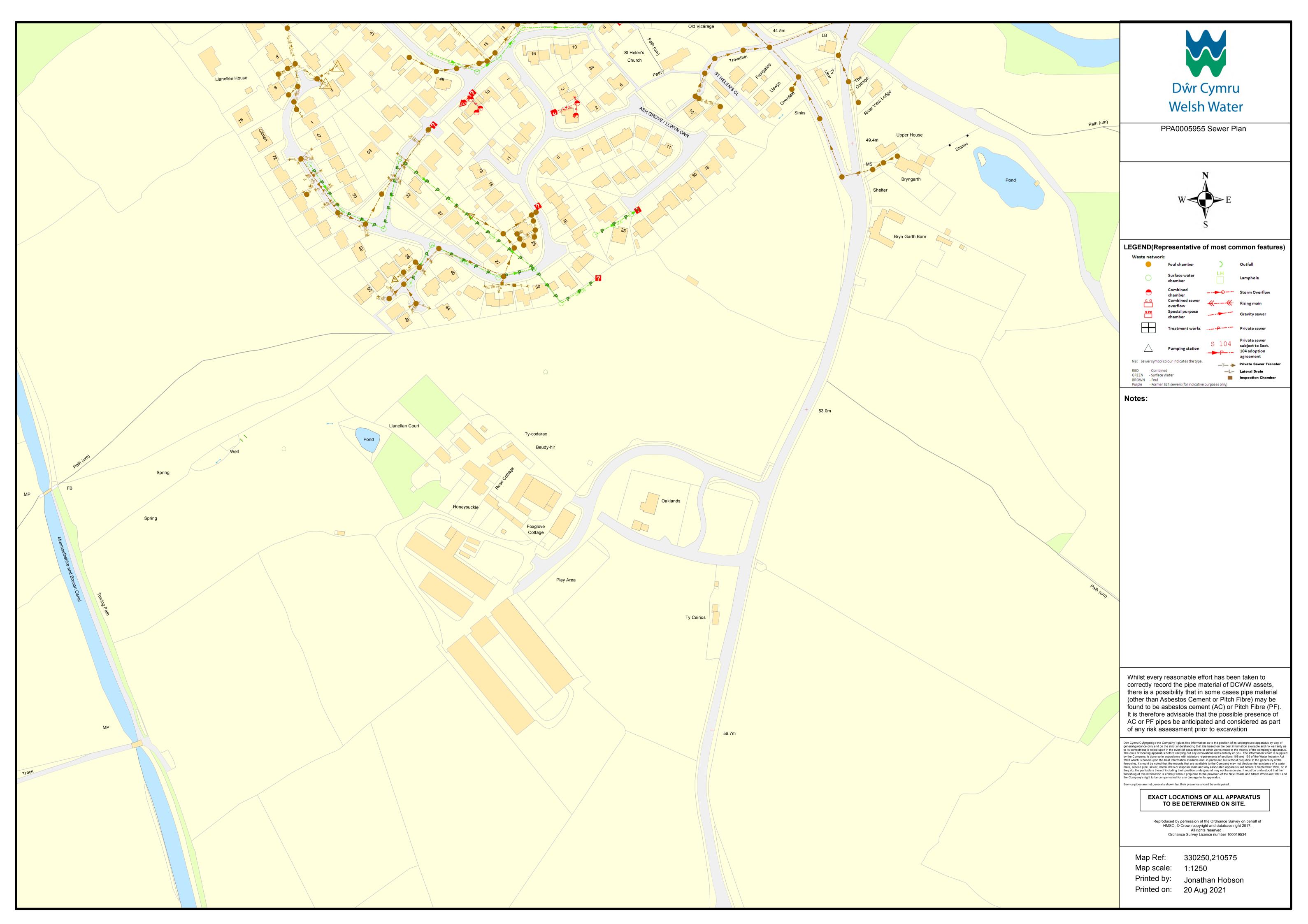

Flooding hazard plan

Photo location plan

Drainage Layout

Appendices


Appendix A

Proposed site layout plan

Appendix B

DCWW sewer plan

Appendix C

Causeway Flow Calculations

CAUSEWAY

File: HYG953 M 231208 TP Llar Page 1

Network: Storm Network

Tom Paltridge 08/12/2023

Design Settings

Rainfall Methodology Return Period (years) Additional Flow (%) CV Time of Entry (mins) Maximum Time of Concentration (mins)	FEH-22 100 0 1.000 5.00 30.00	Minimum Velocity (m/s) Connection Type Minimum Backdrop Height (m) Preferred Cover Depth (m) Include Intermediate Ground Enforce best practice design rules	0.200 1.200 √
Maximum Time of Concentration (mins) Maximum Rainfall (mm/hr)	30.00 50.0	Enforce best practice design rules	√

Nodes

Name		T of E (mins)		Easting (m)	Northing (m)	Depth (m)
			(m)			
Basin	1.033	5.00	53.000	330379.000	210644.000	1.000

Simulation Settings

Rainfall Methodology	FEH-22	Drain Down Time (mins)	240	100 year (l/s)	5.7
Summer CV	1.000	Additional Storage (m³/ha)	0.0	Check Discharge Volume	\checkmark
Winter CV	1.000	Check Discharge Rate(s)	\checkmark	100 year 360 minute (m³)	266
Analysis Speed	Normal	1 year (l/s)	2.3		
Skip Steady State	Х	30 year (l/s)	4.7		

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440
----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	------

Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
2	40	10	0
30	40	10	0
100	40	10	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.80
Greenfield Method	FEH	Growth Factor 100 year	2.18
Positively Drained Area (ha)	1.033	Betterment (%)	0
SAAR (mm)	1139	QMed	2.4
Host	6	QBar	2.6
BFIHost	0.812	Q 1 year (I/s)	2.3
Region	9	Q 30 year (I/s)	4.7
QBar/QMed conversion factor	1.075	Q 100 year (I/s)	5.7
Growth Factor 1 year	0.88		

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	1.033	Storm Duration (mins)	360
Soil Index	2	Betterment (%)	0
SPR	0.30	PR	0.353
CWI	125.348	Runoff Volume (m³)	266

File: HYG953 M 231208 TP Llar

Network: Storm Network

Tom Paltridge 08/12/2023

Page 2

Node Basin Online Orifice Control

Flap Valve x Design Depth (m) 1.000 Discharge Coefficient 0.600 Replaces Downstream Link ✓ Design Flow (I/s) 2.3

Invert Level (m) 52.000 Diameter (m) 0.033

Node Basin Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 10.0 Invert Level (m) 52.000 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins)

Depth Inf Area Inf Area Area Depth Area (m) (m²) (m²) (m) (m²) (m²) 0.000 1400.0 0.0 1.000 1826.2 0.0

File: HYG953 M 231208 TP Llar Network: Storm Network

Tom Paltridge 08/12/2023

Page 3

Results for 2 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.99%

Node Event US Peak Level Depth Inflow Node Flood Status Node (mins) (m) (I/s) Vol (m³) (m³) (m) 1440 minute winter Basin 1440 52.494 0.494 24.0 743.0314 0.0000 OK

Link Event US Link Outflow Discharge (Upstream Depth) Node (I/s) Vol (m³) 1440 minute winter Basin Orifice 1.6 105.3

File: HYG953 M 231208 TP Llar

Network: Storm Network

Tom Paltridge 08/12/2023

Page 4

Results for 30 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.99%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
1440 minute winter	Basin	1440	52.838	0.838	41.7	1323.2760	0.0000	OK

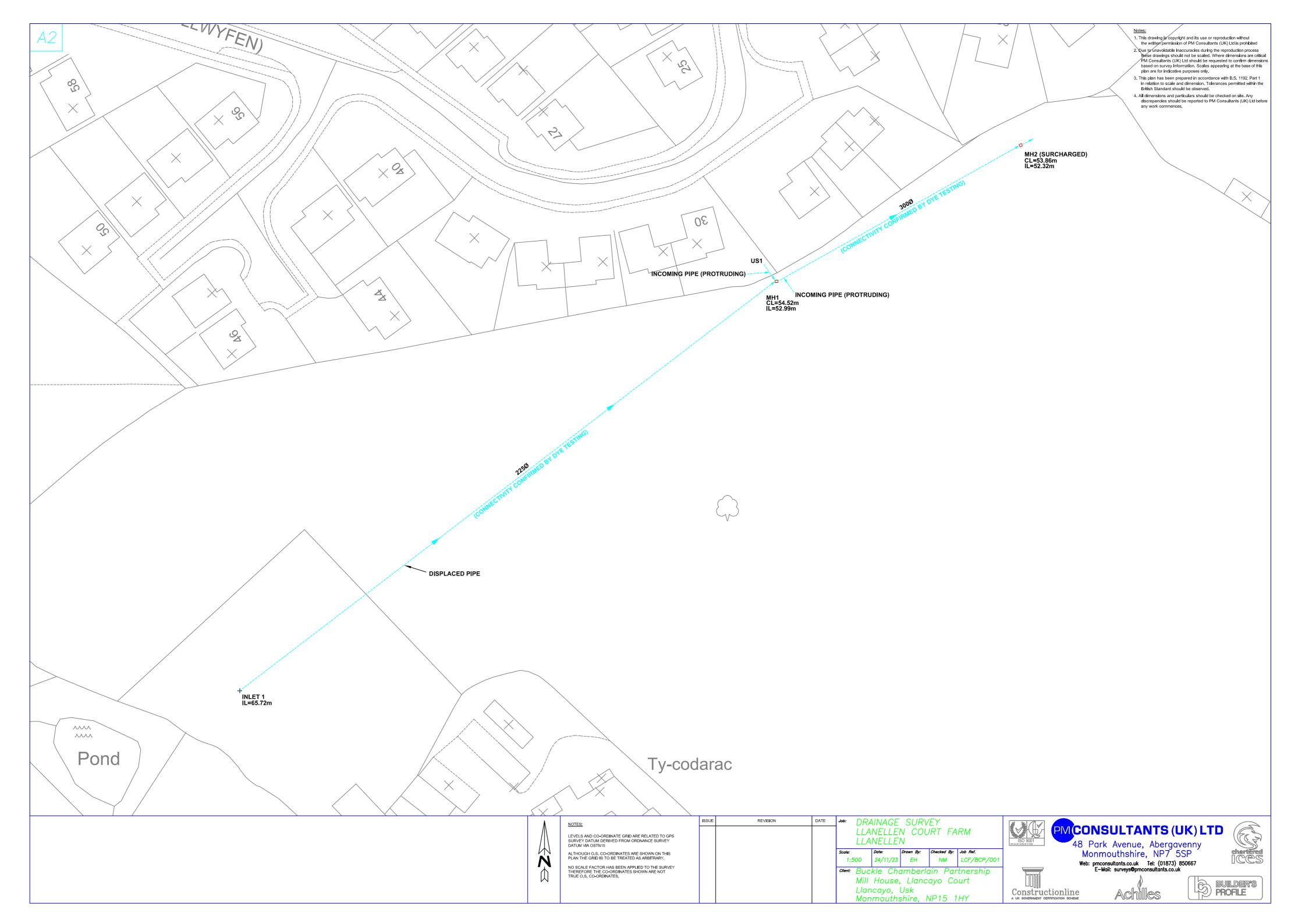
Link Event US Link Outflow Discharge (Upstream Depth) Node (I/s) Vol (m³) 1440 minute winter Basin Orifice 2.1 140.1

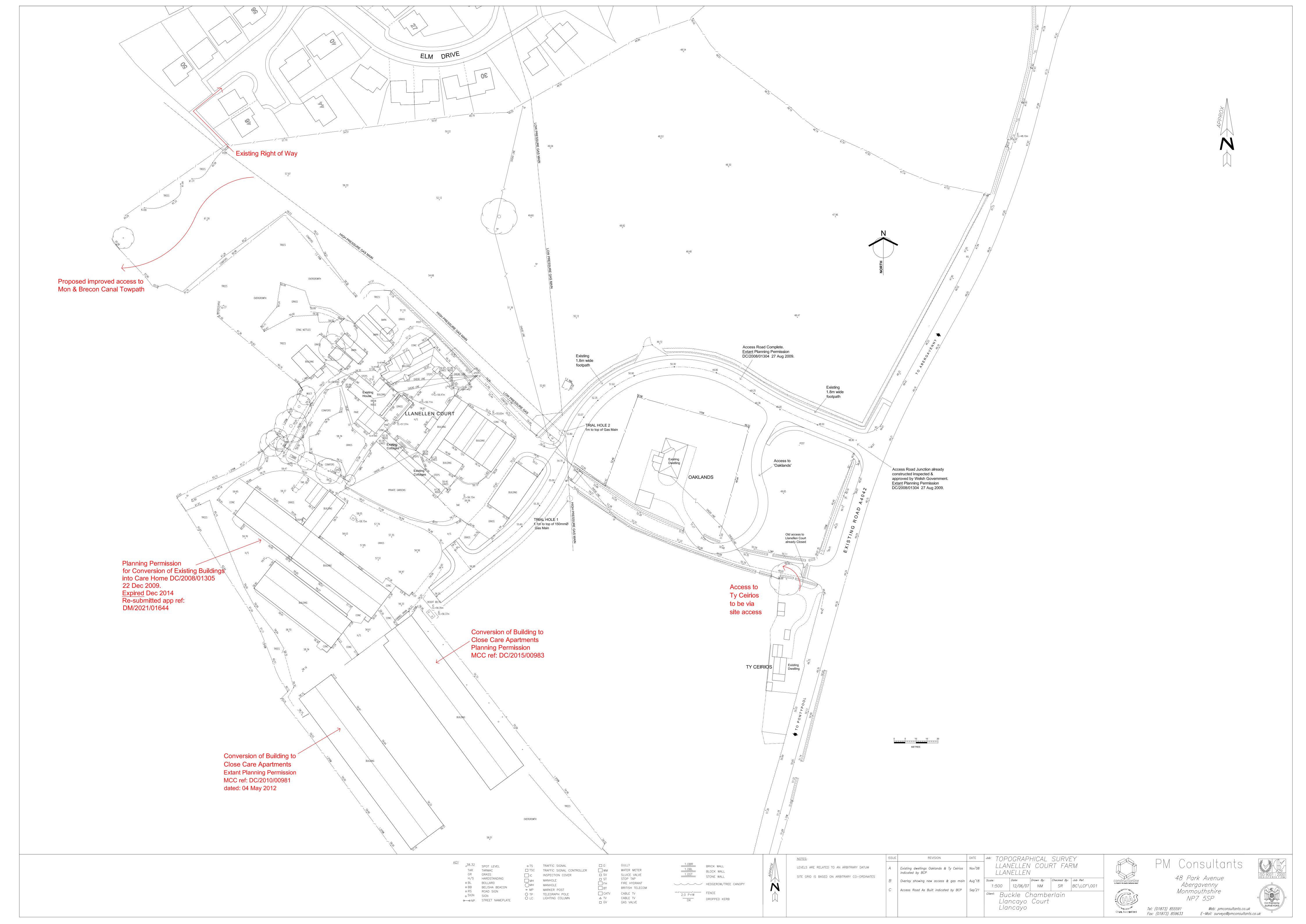
File: HYG953 M 231208 TP Llar

Network: Storm Network

Tom Paltridge 08/12/2023

Page 5

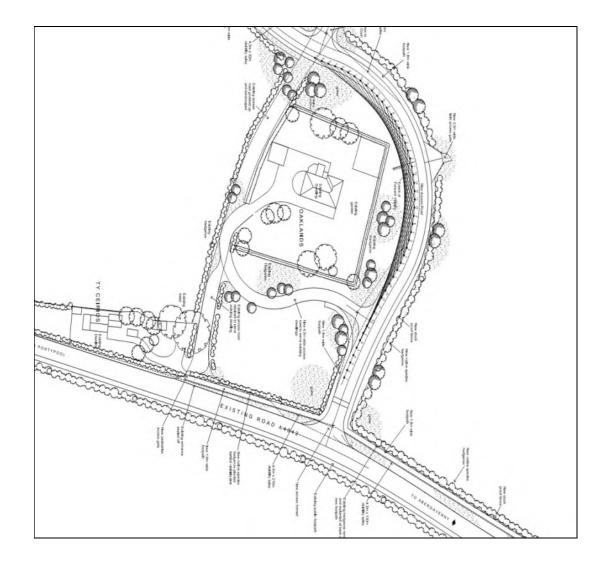

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.99%


Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
1440 minute winter	Basin	1440	52.985	0.985	49.6	1586.0590	0.0000	OK

Link Event	US	Link	Outflow	Discharge
(Upstream Depth)	Node		(I/s)	Vol (m³)
1440 minute winter	Basin	Orifice	2.2	152.8

Appendix D

Drainage Survey and Topographic Survey



Appendix E

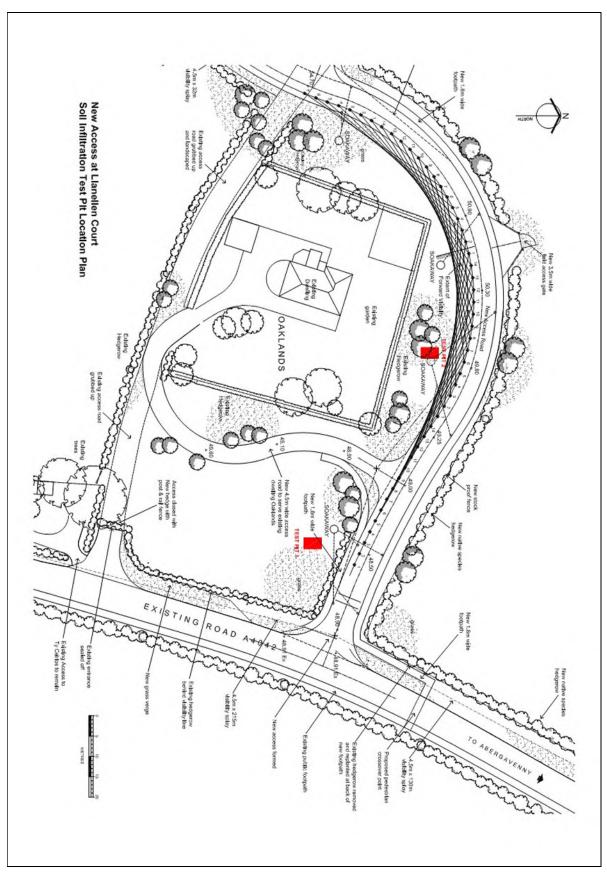
Llanellen Access Road Drainage Statement (2017)

Llanellen Court

Approved access road

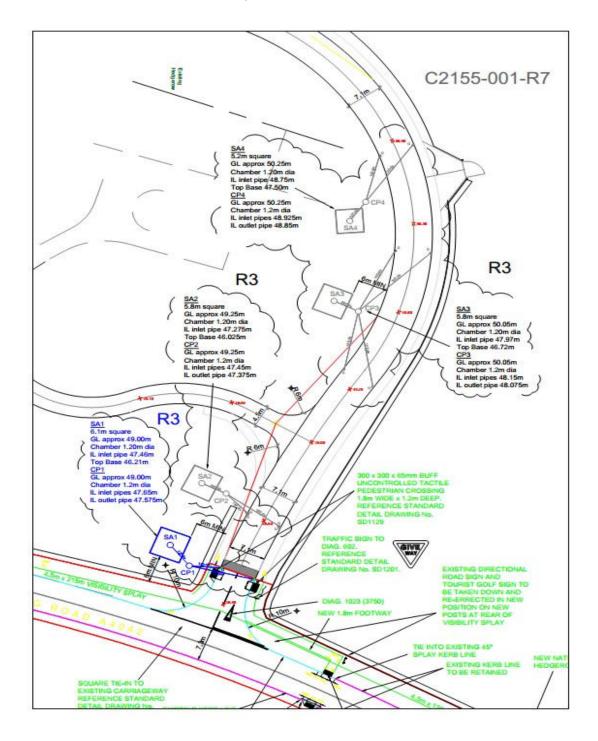
Highway Drainage Statement

April 2017


Traffic and Transport Planning

Contents

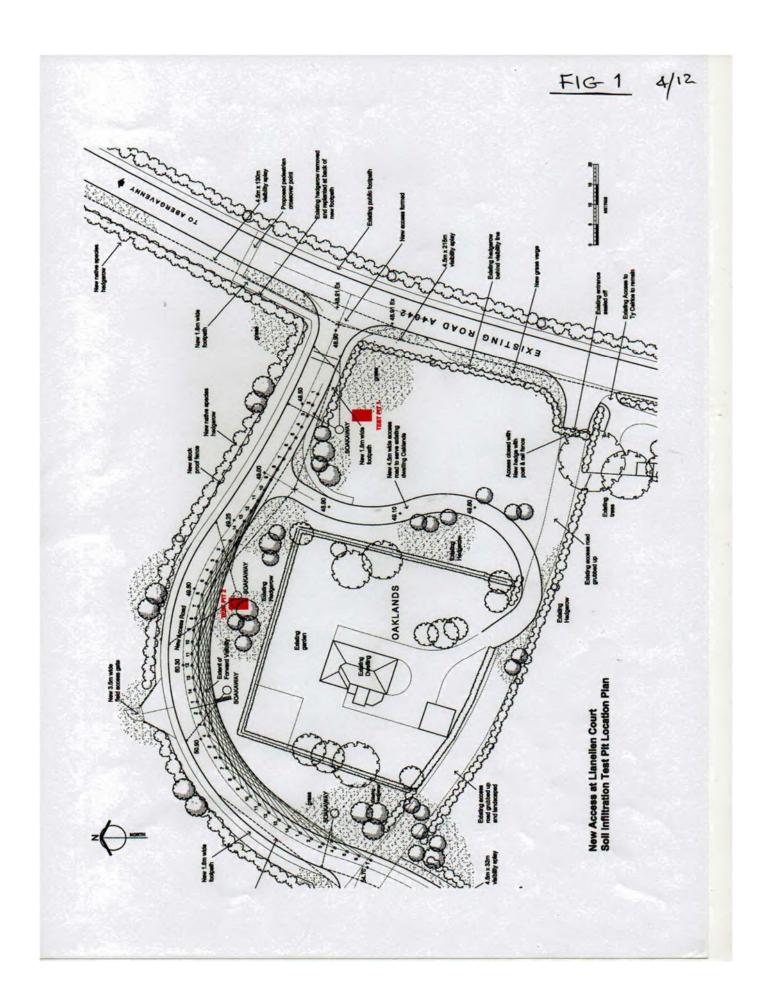
1	Introduction	2
2	Works associated with new access	2
3	Soakaway Design	2
Figu	res	
1	Location of Trial Pits	3
Appe	endix	
Α	Location of Soakaways and Catch-pits	4
В	Soil Infiltration Rates	5
С	New Junction Soakaway and Catch-pit	17
С	Access Road Soakaways and Catch-pits	22
D	Detail of Soakaway Pit with Rigid Lining	30


1 Introduction

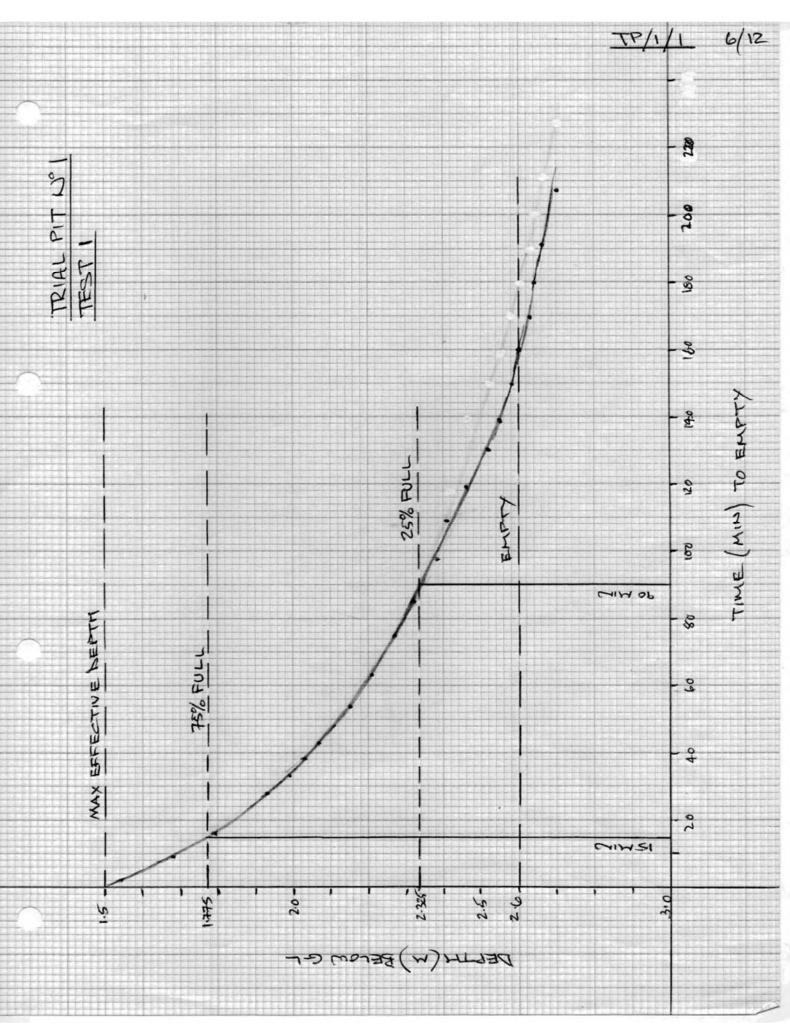
- 1.1 The approved new access road to Llanellen Court is located on the west of Route A4042. Adjacent to the site the road has a west to east cross-fall away from the proposed access to a number of gullies which appear to drain into adjacent fields.
- 1.2 The junction of the access road with the trunk road will be located at the bellmouth of an existing field gate approximately 10 metres wide and 5 metre deep. It falls away from the road so surface run-off drains into the adjacent field.
- 1.3 10m south of the new access junction a lay-by extends for some 30m to the existing access to Llanellen Court which drains towards the trunk road. Neither the lay-by nor the existing access road has drainage gullies.
- Works associated with new access
- 2.1 When the new access road has been constructed the lay-by will become a grass verge and there will be little or no run-off onto A.4042. The existing access to Llanellen Court adjacent to the lay-by will be closed off, grubbed up and seeded so there will be no run-off onto the trunk road.
- 2.2 A section of access road will be adopted by Welsh Government. The boundary between the public and private highways will be marked by the installation of gullies on both sides of the road which will drain into soakaway SA1 designed to BRE Digest 365 standards (Appendix A). From this point the road will continue to slope away from the trunk road until it reaches a low point some 10m from the adopted boundary. Gullies will be installed on both sides of the road draining into soakaway SA2 (Appendix A).
- 2.3 From this point gullies will be constructed on both sides of the road at appropriate intervals draining into soakaways SA3 and SA4 (Appendix A).
- 3 Soakaway Design
- 3.1 Soil infiltration tests were carried out in accordance with BRE Digest 365 Soakaway Design on April 4, 5 and 6 2017 and the weather was dry. Two trial pits were excavated to a depth of approximately 2.7m at the locations shown in Fig 1. The pits had vertical sides trimmed square and groundwater was absent. They were filled three times with water to the invert level using a water bowser. The time taken for the water level to drain from invert level to empty was observed and recorded. The infiltration rates calculated for TP1 and TP2 were 4.39x10⁻⁵ and 4.707 x 10⁻⁵ respectively (Appendix B)
- 3.3 The soakaway pit (SA1) that will serve the new junction will be 6.1x6.1x2.8 metres with a 1.2m diameter concrete chamber and the catch-pit (CP1) will be a 1.2m diameter concrete chamber (Appendix C).
- 3.4 The soakaway pit (SA2) serving the access road near the new junction will be 5.80x5.80x3.2 metres with a 1.2m concrete chamber and the catch-pit (CP2) will be similar to CP1.
- 3.5 The dimensions for each soakaway will be based on standard detail (Appendix E).

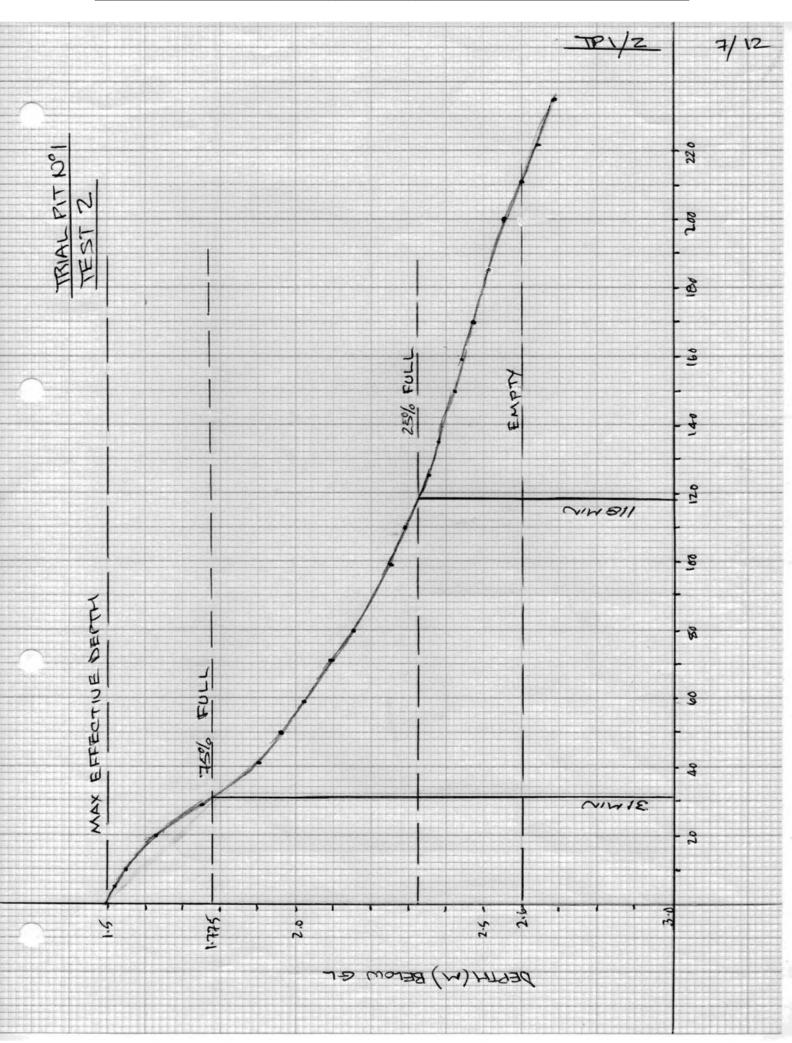
Fig 1 Location of Trial Pits

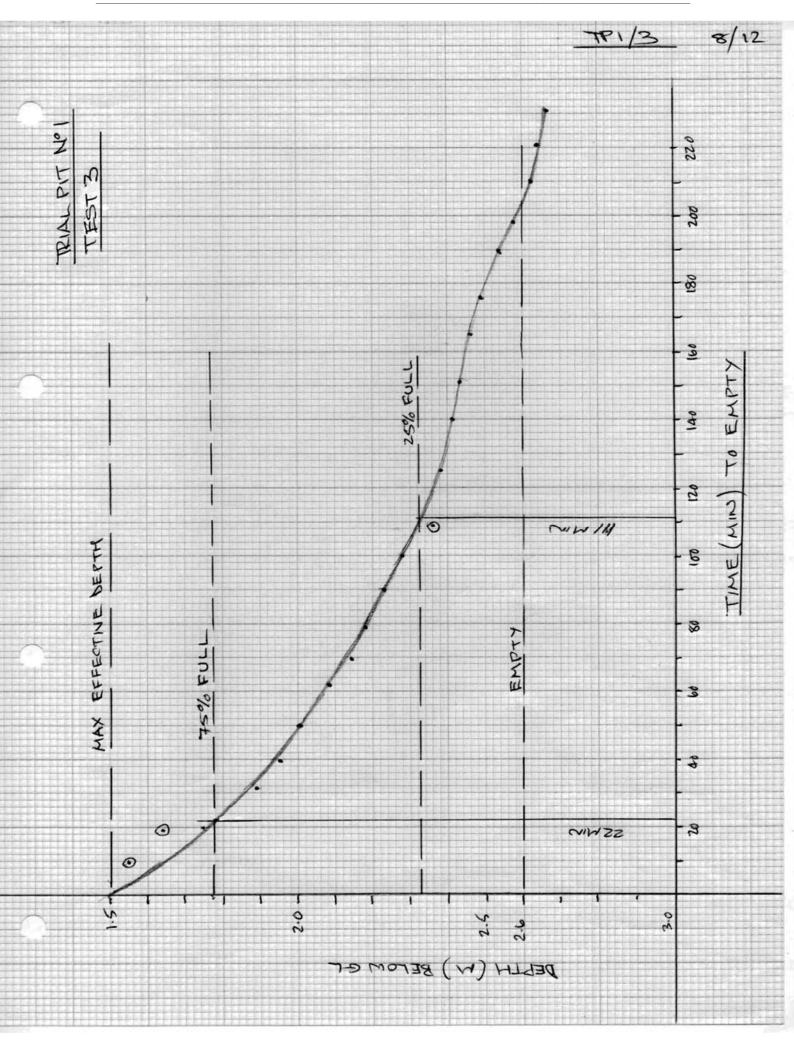
Appendix A Location of Soakaways and Catch-pits

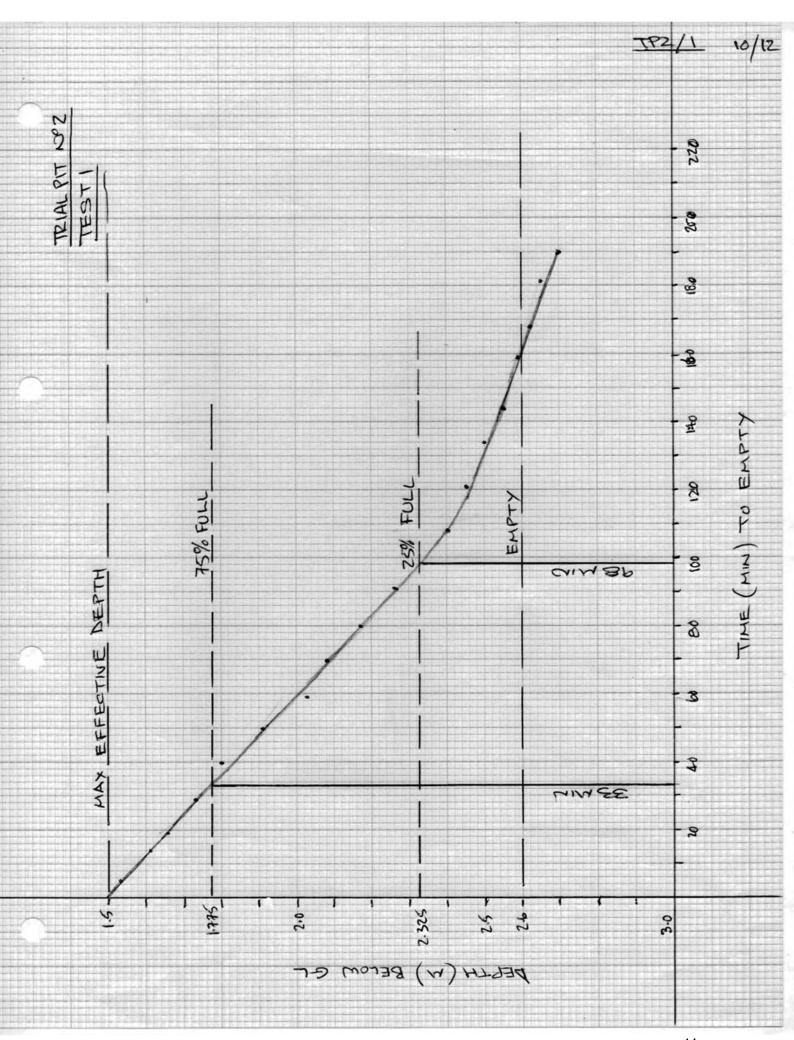


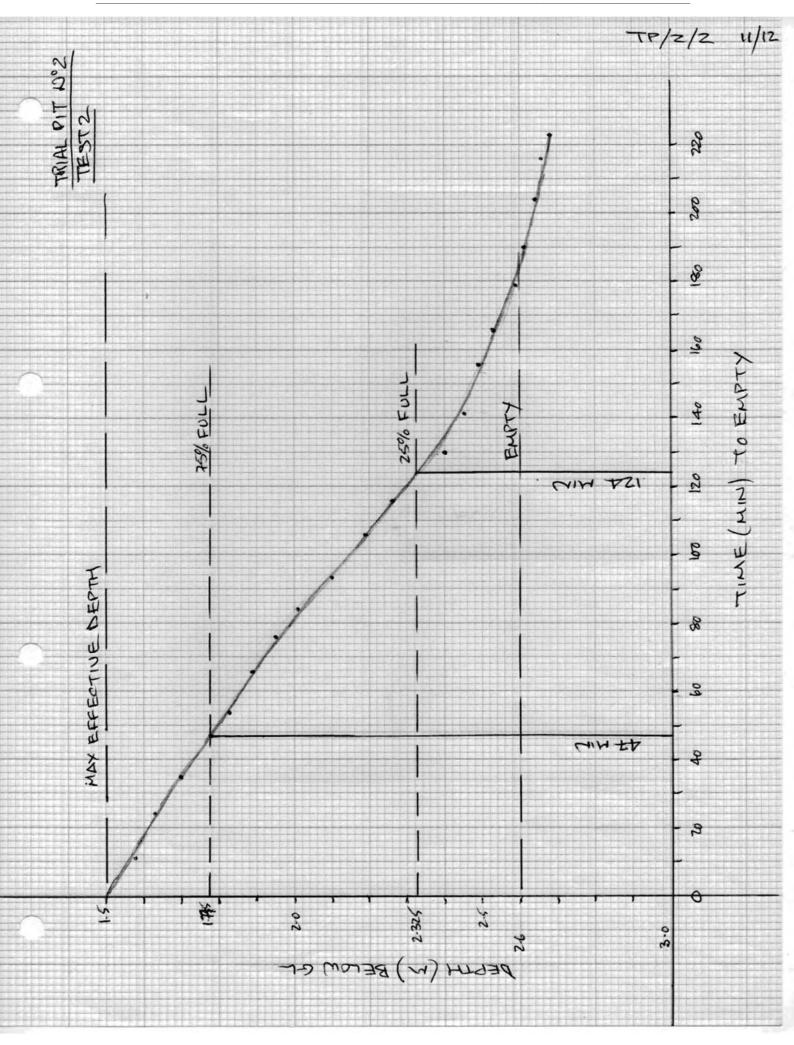
Appendix B Soil Infiltration Rates


Berner BRAINAGE Project No. CZISS 1 Shee No. Ref Calculations Soil INFILTRATION PATE Soil infiltration tools were carried out in accordance with BRE 365. Two brial pits were dug at locations indicated on Fig.1. after trimming of the sides both TP1 & TP2 were: 2. Zur long x 1. 3m wide x 2.7 m deapfunx Because the base of the brial pits could not be cloaned effectively an O/A depth of 2 four was adopted. The trial pits were filled 3 times and the time for the water to drain from the man effective dapth (1.5m below GL) to emply was recorded. From these record sheets TP1 & TP2, from these record sheets TP1 & TP2, From BRE 365 Soil infiltration rate f = VP75-25 where VP75-25 = effective storage volume was depth. Calculations Berision Berision	Project	MORSPAN HOLDINGS PROPOSED ACCESS RO LLANELLEN COURT, L ABERGAYENNY	TA dag	217	TRAFFIC AND TRANSPORT PLANNING
SOIL INFILTRATION PATE Soil infiltration tools were carried out in accordance with BRE 365. Two brial pits were dug at locations indicated on Fig 1. after trimming of the sides both TP1 & TP2 were: 2. Zun long x 1. 3m wide x 2.7 moleculum Because the base of the brial pits could not be cleaned effectively an O/A depth of 2.6m was adopted. The brial pits were filled 3 times and the time for the water to drain from the man effective depth (1.5m below GL) to emply was recorded, ref: site record sheets TP1 & TP2, from these record sheets applies were potted for each set of results, reference graphs TP1/1 to TP1/3 and TP2/ to TP2/3. From BRE 365 soil infiltration rate f = Vp75-25 apso x \$\frac{1}{2}\$ Echic storage volume where \$\frac{1}{2}\$ and \$\frac{1}\$ and \$\frac{1}{2}\$ and \$\frac{1}{2}\$ and \$\frac{1}{2}\$ and \$\frac{1}\$	Element	BRAINAGE	Project No.	CZISS	
Sil infiltration toots were corried out in accordance with BRE 365. Two trial pits were duy at locations indicated on Fig 1. after trimming of the sides both TP1 & TP2 were: 2. Zun long x 1. 3m wide x 2.7 modeop(max) Because the base of the trial pits could not be cloaned effectively an O/A depth of 2.6m was adopted. The trial pits were filled 3 times and the time for the water to drain from the man effective depth (1.5m below GL) to emply was recorded, ref: site record sheets TP1 & TP2, from these record sheets TP1 & TP2, from these record sheets TP1 to TP1/3 and TP2/1 to TP2/3. From BRE 365 Soil infiltration rate f = VP75-25 apso x \$\frac{1}{2}\$ to 25% effective depth were plated.	Ref.	Calculations	4	7740	
ACTION	Six To See See See See See See See See See Se	I infiltration tosts were accordance with BRE accordance with BRE to trial pits were duy a dicated on Fig 1. after 2 whom y 1.3 m wide cause the base of the land be cleaned effective a depth of 2.6 m was a like time for the water with many effective and the many effective and the many effective and the record sheets in these record sheets and these record sheets are platted for each evence graphs TP1/ at TP2/1 to TP2/3.	at locator trimming to 2.7 mg we will be a 3 to drop t	ions ins of ere:- heopimax heopimax ines ines ines ines ines inex ines inex inex inex inex inex inex inex inex	


Project	MORSPAN PROPOSED LLANELI ABERGA	LEN COUR	SRO	TA OF	BN.	TRA	RAFFIC AND ANSPOR ANNING	RT
Element	BRAINAG	3-E	5177	Project No.	CZISS	Shee	t No. of 12	Rev.
Ref.			lculations				Output	
ab	65 cont'd 50 = inter upto bas 75-25 = ti	e over	fective	e depth	wc.	w ee	, ²	
CAL	CULATION IL of incom below of won to both	ephh sing pip it.	re ar			Marx	effecti	w w
	F. Rechire:	storaged -1.5m	= 1.1	m	75 w	1	shiesb 1.1 m 1/21.775	
	Level a) 2	5% Full =	(1.1 ×	3)+ 1.5=	2.325m	75% F.	W=2.32	25v
	VP75-25 = 7.					Vp75-24	S= 1.57	3
4	ap = (2.2x0. = 2.47 ph TPI/I	2+1-43+				ap =	6.71 m2	
	+75-25 = F= 1.57: TR/1 6.715	90-15			s	f-rey	* 5.21x1	0-5
NB C	lculations Date	By	Revision Date	Checked	By	Date		
444	14/4/17	LJ)	Date		HV	Date	Checked	1

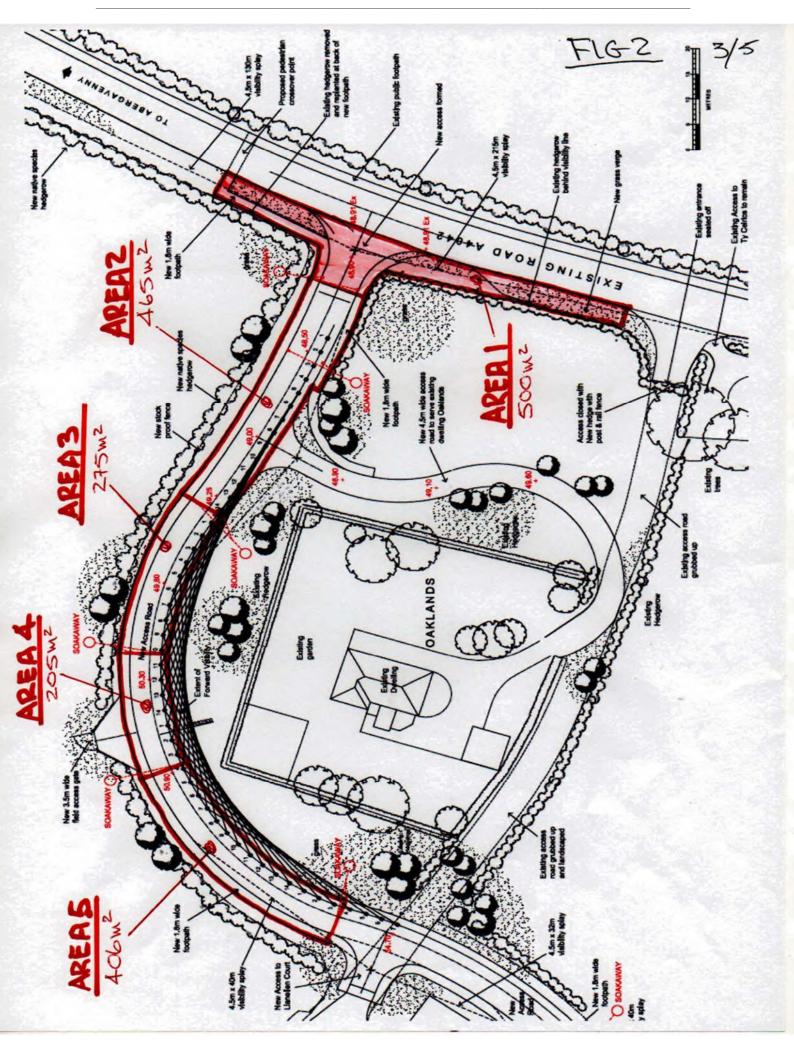

Project	MORSPAN HOLDINGS PROPOSED ACCESS R LLANELLEN COURT, ABERGAYENNY	TA dag	211	TRAFFI AND TRANSPO PLANNII	RT
Element	BRAINAGE	Project No.	CZ155	3 Sheet No.	Rev.
Ref.	Calculation			Output	
CALC	EULATIONS contid		4.70		
Cha	ph TP1/2				
	+75-25 = 118-31	= 87 min			
	· fryz = 1.573 671x87x60	= 449×10	-5	fm/2=4.4	9×10
Gra	ph TP1/3				
	+75-25 = 111-22 =	89 min			
	P-706				
•	· for/3 = 1.573	= 4.39 x 1	0-5	fre1/3 = 4-39	1×10
	TPI use f = 1.39 x			TPI B 4:39	
				11/2431	K U
Grab	hTP2/1 +75-25 = 98-33 =	65 min			
:.	FIRZ/1 = 1.573 671×65×60 =	6.011×10-5		fres/1 = 6.011	xlo
Quray	ph TPZ/Z		7		
3	+75-25 = 124 - 47 = "	77 vin			
			.5	0	
	Frezz = 1.573 671×77×60 =			fre/z=5079	txlo
Thos	475-25 = 126-43 =				
	1772/3 = 1.573 6.71 x 83 x 60	= 4.707 x1	10-5	fre2/3 = 4.70	7×10
F	TP2 Use (* 4.707x			fre2/3 = 4.70.7 TP2/=4.70.7	
		(0		1121=4.707	×(0
1 Ad	Date By Date	Checked	Ву	Date Chec	ked
012	77777				


						TPI	-	5/12
Hole	4/4/1	7	5/4	117	AM 12	5/4/ TPI		PM
1	Time MIN		Time	MM				Deop
	11.10	1.5	9810	-	1.50	1305		1.50
-	11.12 2		0815		1.52		10	1.55
	11.19 9	1.68	0820		1.55	1324	19	1.64
	11-26 16		0830	William	1.63	1325		1.75
	11 .38 28		0839		1.75	1336		1.89
	11 . 43 33	1.99	0851		1.90	1345		1.95
	11.53 43	2.07	0900	50	1-96	1355	50	2.00
	12.04 54	2.15	0900	59	2.02	1407	12	2.08
	12.13 63	2.21	0921	71	2-09	1415	70	2.14
	12.2575		0930		2-15	1424	79	2.18
	12.35 85	2.32	0949	99	2.25	1435	90	2.23
	12.48 98	2.38	1000	110	2-29	1445	100	2.28
	12.58 108	2.4	1015		2.35	1459	114	2.34
	13.09 119		1025		2.38	1510	125	2.38
	13.20 130		1040		2-42	1525	140	2-41
	13.29 139		1049	159	2.44	1536		2.43
-	13.40 150		1100	170	2.47	15.50		2.46
	13.50 160		1115	185	2.51	16.01	176	2.49
	14.00 170		11 . 30	200	2-55	16.15	190	2.54
	14 . 10 180		1141	211	2.60	16.28	198	2.58
	14.21 191		1152		2.64	16.40	210	2.62
	14. 37 20	2.70	1205	235	268	16.51	124	2.64
			18			17.02	232	2.66
				-			-	
-							-	
							-	
							+	
							-	
							-	
							+	
				-			+	





							* =	P	2 9/12
Hdel	514	11	7 AM			7 pm			7 AM
(our	7	PZ	/1	TP	2/	2	τ	P3/	/3
	0800	MIN	1.50	1250	MIN	1.50.	0820	MIN	1.50
	0805	5	1.53	1301	11	1.58	0831	11	1.57
	0814	14	1.61	1314	24	1.63	0846	26	1.69
	0219	19	1.66	1325	35	1.70	0855	35	1.74
	0829	29	1.73	1337	47	1.78	0903	43	1.78
	0840	40	1.80	1344	54	1.83	0920	60	1-87
	0850	50	1.91	1356	66	1.89	0931	71	1-95
	0859	59	2.03	14-06	76	1.95	0945	85	2.03
	0910	70	2.08	1414	84	2.01	0954	94	2.09
	0920	80	2.17	1423	93	2-10	1005	105	2:15
	0931	91	2-26	1436	106	2.19	1014	114	2-22
	0948	108	2.40	1446	116	2.26	1024	124	2.30
	1001	121	2.45	1500	130	2.40	1040	140	2.43
	1014	134	2.50	1511	HI	2.45	1051	151	2.47
1.4	1024	144	2.55	1526	156	2.49	1105	165	2-53
	1039	159	2.59	1536	166	2.53	1115	175	2.56
	1048	168	2.62	1549	179	2.59	1125	185	2.58
	1101	181	2.65	16.00	190	2.61	1134	P14	
	1118	190	2.70	16.14			1145		2-63
				16-26	216	2.66	1156		2-65
						2.68	1200	220	2.66
							1204		
					'				
									1.50
									- The same
	7,54		Y.E.						
						4123			
							THE STATE OF		



New Junction Soakaway and Catch-pit Appendix C

Element SECTION 278 WORKS Project No. C 2155 Sheet No. S	Project	MORSPAN HOLDIN PROPOSED ACCES LLANELLEN COU ABELGAVENNY	RT, L	AD AT	EN	TRAFFIC AND TRANSPORT PLANNING
SAKAWAY DESIGN Spreak sheet used in design based on BRE 365 method. Red Test spread sheet based on design example page 7 (Sheet 5/5) Southauby SAI Max. area of new jundrin draining to gullies breaked at extent of 278 works = 500 m² (Regenere Fig.2) Effective depth southaway 1.1 m C = 4.39 × 10 5 (Trad Pot N°1) Dia soukaway chamber 1200 mm dia Wall thickness of chamber rung 70 mm That = 0.07 Then The Wallingford Procedure Vol3 Maps' Rahard M5-60 mm to M5- two day rainfalls = 0.25 From input, results of spreadsheet widicate a critical ange soukaway = 6.05 × 6.05 m ond true to caupty 50% = 3.06 km. Refer 365	Element	SECTION 278 WORK		Project No.	CZISS	Sheet No. Re
Spread sheet used in design based on BRE 365 method. 2 of Test spread sheet based on design example page 7 (Sheet 5/5) Sealousing SAI Max. area of new muchin draining to gullies located at extent of 272 works = 500 m² (Regenere Fig2) Effective depth soakaway 1.1 m C = 4.39 x 10 5 (Trad Pot N°1) Dia soakaway chamber 1200 mm dia DI = 1.2 m Wall thickness of chamber rung 70 mm Tudd = 0.07 I from the walling ord Procedure Vol3 Maps' Rahand M5-60 min to M5- two day tainfuls = 0.25 From in put, results of spread sheet whiche a critical size soakaway e 6.05 x 6.05 m and true to aupty 50% = 3.06 hm. BRE 365	Ref.		alculations			
Effective depth soakaway 1.1 m $C = 4.39 \times 10^{-5}$ (Trad Pot No1) $C = 4.39 \times 10^{$	on R	preadshed used BRE 365 method Test spread she es win example	ed.	rased a	~~	
F= 4.39 × 10 ⁻⁵ (Treal Pot No)) F= 4.39 × 10 Dia sockaway chamber 1200 mm dia DI = 1.2 m Wall thickness of chamber rung 70 mm Toull = 0.07 The walling and Procedure Vol3 Maps' Rahinof M5-60 min to M5- two day rainfalls = 0.25 From input, results of spreadshalt widicate a critical 2020 sockaway = 6.05 × 6.05 m and true to ampty 50% = 3.06 hm. EXE 365					Jullies	Speedshoot A = 500 m² d = 1.1 m
Wall thickness of chamber rung 70mm Toull = 0.07 The Wallingford Recodure Vol3 Maps' Rahead M5-60 min to M5- twoday rainfalls = 0.25 From input, results of spreadshoot whicale a critical 2020 soakaway = 6.05 x 6.05 m and true to aupty 50% = 3.06 hrs. Calculations Revision	6	- 4.39×10-5 (7	Treal !	54 Mo1		f= 4.39×10
Maps' Rahinal M5-60 min to M5- twoday rainfalls = 0.25 From input, results of spreadshoot whicale a critical size sockaway = 6.05 x 6.05 m and time to supply 50% = 3.06 hm. Revision Calculations Revision		wall thickness of c	dunad	erns	70mm	m 50.0 = New T
widicale a critical size soakaway = 6.05 x 6.05 w and trueto aupty 50% = 3.06 km. REE 365	*	Maps' Rational M	5-60	mir 6	W5-	r= 0.25
B. Date	,	iron input, results of vidicale a critical = 6.05 x 6.05 m	sus Sebu	eodshool 2 sookaa	way	<24h BRE 365
Date Checked By Date Checked	By I	Date, By	Revision Date	Checked	By	Date Checked

Project	PROPOSE!	HOLDINGS ACCESS F LEN COURT EXENTY	TA daos	BN.	A TRAN	AFFIC ND SPORT NNING
Element	SECTION: DRANAGE	278 works	Project No.	CZISS	Sheet No.	o. Rev.
Ref.		Calculation	ns		The same of the sa	utput
Soal	Kaway SAI	contid			51	+1
		away pit 6	10 wsg.		6.10	3 m sq
	1	200 mm dia			1.2	mdia
		49.00 W			GL	19.00
11	- IInlet	pipe 47	46 m		1 Lin	leb 47.4
	op base	AL	.21m.		TopBo	se 46.2
	GL Appro	1200 mm d * 49.00 m per (150 bia) pipe (225 d		5 W 5 W	1.2 GL 2 IL (150	mdia 49.00 m) 47.65 5) 47.57
T _B	alculations Date	Revisio By Date	n Cheoked			

4/5

Job No C2155 Date 13/04/17
Project Llanellen Court Access Road SOAKAWAY SA1 By DA

SOAKAWAY DESIGN TO BRE 365

A	500 m2	Impermeable Surface Area of Catchment
1	4.39E-05 m/sec	Infiltration rate f of soil into which soakaway drains
d	1.1 m	Effective storage depth of soakaway
VR	0.3	Free volume (void) ratio of fill to pit around rings
Twall	0.07 m	Wall Thickness of rings
D1	1.2 m	Internal diameter of Ring 1
Vol R1	1.24	Storage capacity of ring 1 (= 3.142 * (D1*0.5)*2 * d m3)
Void R1	0.465	Equivalent volume of Ring 1 (incl wall) at void ratio of outer fill (= 3.142*(D1+Twall)^2*d*VR m3)
D2	0 m	Internal diameter of Ring 2
Vol R2	0.00	Storage capacity of ring 2 (= 3.142 * (D2*0.5)*2 * d m3)
Void R2	0.000	Equivalent volume of Ring 2 (incl wall) at void ratio of outer fill (= 3.142*(D2+Twall)^2*d*VR m3)
M5-60 min	20 mm	Base Rainfall
D		Storm duration (in minutes)
	0.25	Rainfall ration (From BRE 365 Figure 1)
Z1		Factor from BRE 365 Table 1 based on M5-D and 'r' from Fig 1
M5-D		Total rainfall in design storm duration D for 5-year return period (=Z1*D mm)
Location		England and Wales
Z2		Factor from BRE 365 Table 2 based on M5-D
M10-D		Total rainfall in design storm duration D for 10 year return period (=M5-D*Z2 mm)
R		=M10-D
1		Total inflow to soakaway (=A*R/1000 m3)
L		Minimum length for side of square pit [= -O/L + (O/L^2+4*[Vol Pit/L2]*Y)^0.5 / (2 * [Vol Pit/L²])]
A ₉₅₀		Internal surface area of soakaway to 50% effective depth; excl. base area
A,50 / L	2.20	
0		Outflow from soakaway (=A _{sco} *f*D m3)
Vol Pit		Effective storage volume of whole pit (ignoring the rings)
Vol Pit/L ²	0.33	
X	0.78	= (VoIR1+VoIR2)-(VoidR1+VoidR2)
Y		Inflow (I) minus value X

			Inflow					
D minutes	Z1	M5-D mm	Z2	R=M10-D mm	⊨A*R	O/L	Y	L (m)
5	0.33	6.60	1.19	7.85	3.93	0.0290	3.15	3.05
10	0.48	9.60	1.22	11.71	5.86	0.0579	5.08	3.84
15	0.58	11.60	1.24	14.38	7.19	0.0869	6.41	4.28
30	0.76	15.20	1.24	18.85	9.42	0.1738	8.65	4.86
60	1.00	20.00	1.24	24.80	12.40	0.3477	11.62	5.43
120	1.27	25.40	1.22	30.99	15.49	0.6954	14.72	5.71
240	1.64	32.80	1.19	39.03	19.52	1.3908	18.74	5.72
260	1.88	37.60	1.17	43.99	22.00	1.5066	21.22	6.05
600	2.24	44.80	1.14	51.07	25.54	3.4769	24.76	4.87
1440	3.10	62.00	1.13	70.06	35.03	8.3445	34.25	3.59

For square pit:

Critical Length L = 6.05 m
Time to Empty 50% = 3.06 hrs

Consider rectangular alternative:

Perimeter P = 4*L = 2*A + 2*B

Adopt A = 6.05 1.20 Then B = 6.05 10.91 3.00 m 9.11 m

SA 1.xls - 14/04/17

Job No Test Date 06/01/09
Project Based on BRE Digest 365 Worked Example page 7 By DA

SOAKAWAY DESIGN TO BRE 365

A	95	m2	Impermeable Surface Area of Catchment
T	3.30E-05	m/sec	Infiltration rate f of soil into which soakaway drains
d	1.5	m	Effective storage depth of soakaway
VR	0.3		Free volume (void) ratio of fill to pit around rings
Twall	0.07	m	Wall Thickness of rings
D1	0.9	m	Internal diameter of Ring 1
Vol R1	0.95		Storage capacity of ring 1 (= 3.142 * (D1*0.5)*2 * d m3)
Void R1	0.382		Equivalent volume of Ring 1 (incl wall) at void ratio of outer fill (= 3,142*(D1+Twall)*2*d*VR m3)
D2	0	m	Internal diameter of Ring 2
Vol R2	0.00		Storage capacity of ring 2 (= 3.142 * (D2*0.5)/2 * d m3)
Void R2	0,000		Equivalent volume of Ring 2 (incl wall) at void ratio of outer fill (= 3.142*(D2+Twail)*2*d*VR m3)
M5-60 min	20	mm	Base Rainfall
.Di			Storm duration (in minutes)
r	0.35		Rainfall ration (From BRE 365 Figure 1)
Z1			Factor from BRE 365 Table 1 based on MS-D and 'r' from Fig 1
M5-D			Total rainfall in design storm duration D for 5-year return period (=Z1*D mm)
Location			England and Wales
Z2			Factor from BRE 365 Table 2 based on M5-D
M10-D			Total rainfall in design storm duration D for 10 year return period (=M5-D*22 mm)
R			=M10-D
ì			Total inflow to soakaway (=A*R/1000 m3)
Ļ			Minimum length for side of square pit [=-O/L+(O/L^2+4*[Vol Pit/L2]*Y)^0.5 / (2 * [Vol Pit/L2])]
Asso			Internal surface area of soakaway to 50% effective depth, excl. base area
A _{s50} / L	3,00		
0			Outflow from scakaway (=A _{vo} *f*D m3)
Vol Pit			Effective storage volume of whole pit (ignoring the rings)
Vol Pit/L2	0.45		7 TOYOU 7 TO QUIC.
X	0.57	!	= (VoIR1+VoIR2)-(VoIdR1+VoidR2)
Y			Inflow (I) minus value X

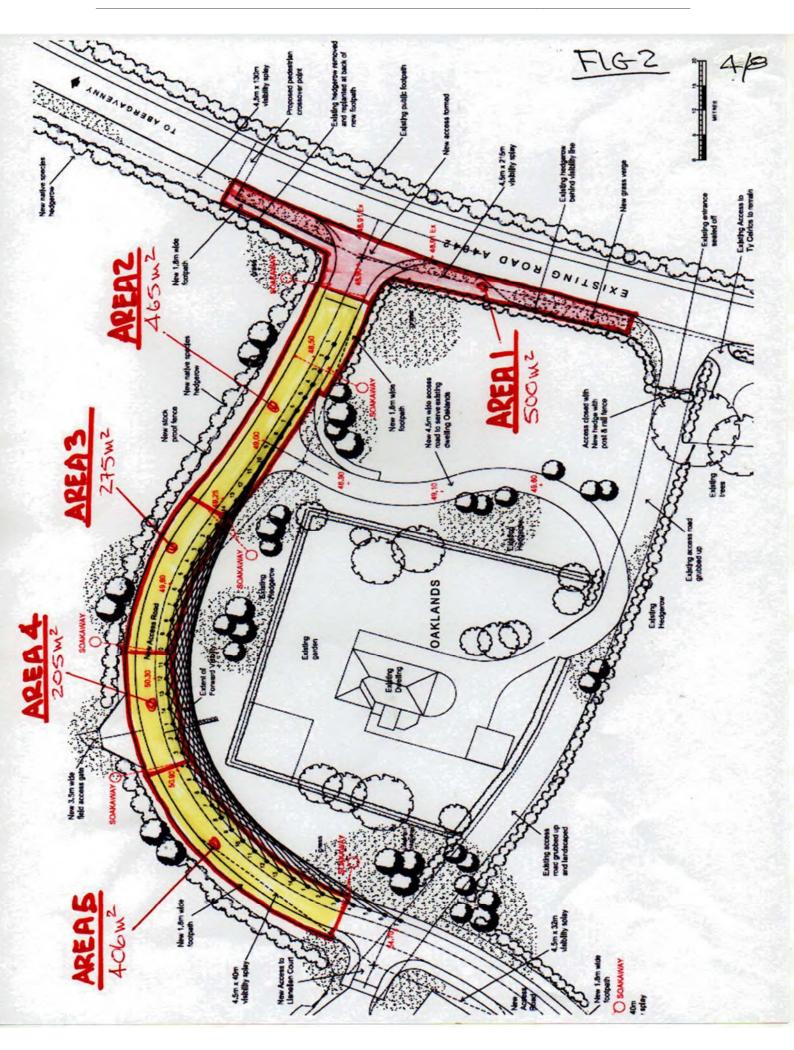
			Inflow	A STATE OF STATES	(1975) "-> reflektion3; }	geg diver orteanière	i Bilio di Sandini di Sandini	
D minutes	Ž1	M5-D .mm	Z2	R=M10-D mm	J-A*R	O/L	Ý.	L (m)
5 10	0.34	6.80	1.19	8.09	0.77	0.0297	0.20	0.63
10	0.49	9.80	1.22	11.96	1.14	0.0594	0.56	1.06
15	0.59	11,80	1.24	14.63	1.39	0.0891	0.82	1.25
15 30	0.77	15.40	1.24	19.10	1.81	0.1782	1.24	1.48
60	1.00	20.00	1.24	24.80	2.36	0.3564	1.78	1.63
120	1.25	25.00	1.22	30.50	2.90	0.7128	2.33	1.62
240	1.57	31,40	1.19	37.37	3,55	1.4256	2.98	1.44
260	1.78	35.60	1.17	41.65	3.96	1.5444	3.38	1.52
600	2.12	42.40	1.14	48.34	4.59	3,5640	4.02	1.00
1440	2.84	56,80	.1.13	64.18	6.10	8,5536	5.53	0.63

For square pit:

Critical Length L= 1.63 m Time to Empty 50% = 1.52 hrs

Consider rectangular alternative:

Perimeter P = 4*L = 2*A + 2*B


Adopt A = 1.63 0.90 Then B = 1.63 2.37 8,00 m -4.73 m

Appendix D Access Road Soakaways and Catch-pits

Project	MORSPAN HOLDINGS PROPOSED ACCESS LLANELLEN COURT ABERGAYENNY	ta daos	<u>en</u>	TRAFF AND TRANSPO PLANNI	ORT
Element	PROPOSED ACCESS ROAD BRAINAGE	Project No.	CZISS	Sheet No.	Rev
Ref.	Calculation	ons		Output	1
SPROX SAECHEY	entsteet used in des E 365 method. 8. Took sprodsheet I comple page 7 (3h containing SAZ readramed = 465 Apodrie depth sonkar = 4.39 × 10-5 (Trad to nois sonkamy chamber bull thickness 1 = 0.25 on input, results of dicate a critical si	m² (Refficuray 1.1 m 2+ N°1) 1200 mm de 70 mm	design 32)	Input to Speaded A=465 A=1-1 u G=4-39 D1=1-2 Toidl=00 C=0.25	me ne
~ <u>^</u>	dicate a critical si 5.77 x 5.77 m and time to empty 50 Make soakaway pit in Approx 49.25 m Enlet IL 47.275 m Top Base 46.025 m Chamber dia 1200 m	5.80 ms	sho	Sizes Sizes Sizes Tulet 47:2 Tophrae 46 Dia 1:20	8 m 9 5 m 275 m 025
			and the same of the same		
Cr	Pate By Date	Checked	By	Date Che	

Project	MORSPAN HOLDINGS PROPOSED ACCESS F LLANELLEN COURT, ABERGAYENNY	TA daos	211	TRAFFI AND TRANSPO PLANNII	ORT
Element	ROAD BRAINAGE	Project No.	CZISS	Sheet No. 2 of 8	Rev
Ref.	Calculation	ns		Output	
	akaway SA3: on drawing = Area 3	+ Area 4		Fugut 1 Speedsh	in the
	5F52) = 275+		ow ²	A = 480 V	
	Jedne dopt soakawa			d=1.1m	
	4.707 × 10-5 (Trad)	C= 4.707	
Or	oubserdia 1200 wa			DI = 1.2.	
	all thick was 70 mm			Twall -0.0	
	× 0.25			r = 0.24	5
-	ما دور و می می داد.	1-1-1	-12.1		2010
20	in results of spreads	3m	ricar		
	me to empty 50% =			< 24 km BR	LE36
	Take soakaway 5.80			S32 58	wsq
G	L Appex 50.05 m			GL 50.05	m
I	whet IL 47.97 W			Inlet 47	.97
	m Base 46.72 m			T/Bose 46-	
O	roubser dec 1200 mm			dia 1-20	~
S	rokaway SA4			Tuput	
	rea 5 drawing = 406	, w ²	A Carlo	A = 406 W	-
+	emander of wiput to s		r same		
	nor sas		, , ,		
Fr	on results of spreaments	Seeron	Hear		
	of southerny = 5.			< 24 6 BR	F 36
,	ne 6 empty 50% =	2700			
Ca Bu I	leulations Revision Date By Date			BA 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	
111	Sate By Date	Checked	By	Date Checi	ked

Project	PROPOSE: LLANEL	U HOLDING D ACCESS ILEN COURT AXENTY	ROAD AT	LEN	TRAFF AND TRANSPO PLANNI	ORT
Element	PROPOSEI ROAD DRA	D ACCESS	Project No.	CZISS		Rev
Ref.		Calcul	ations		Output	
Sec	akaway 5	iA4 could				
M	ake sool	raway 5.	20 mgg.		Size 5.21	o men
G	L Approx	50.25 W			GL = 50.29	5m
		48.75 m			IN-148	.75
7	opbase	47.50 m			Tophase	
		1200 m			Dia 1-2	
×						
	leulations	Revi	sion	WELL TO BE COME		-
NR T	Date	By Da		By	Date Chec	ked

Job No	C2155		Date	13/04/17
Project	Llanellen Court Access Road	SOAKAWAY SA2	Ву	DA

SOAKAWAY DESIGN TO BRE 365

A	465	m2	Impermeable Surface Area of Catchment
f	4.39E-05	m/sec	Infiltration rate f of soil into which soakaway drains
d	1.1	m	Effective storage depth of soakaway
VR	0.3		Free volume (void) ratio of fill to pit around rings
Twall	0.07	m	Wall Thickness of rings
D1	1.2	m	Internal diameter of Ring 1
Vol R1	1.24		Storage capacity of ring 1 (= 3.142 * (D1*0.5)^2 * d m3)
Void R1	0.465		Equivalent volume of Ring 1 (incl wall) at void ratio of outer fill (= 3.142*(D1+Twall)^2*d*VR m3)
D2		m	Internal diameter of Ring 2
Vol R2	0.00		Storage capacity of ring 2 (= 3.142 * (D2*0.5)^2 * d m3)
Void R2	0.000		Equivalent volume of Ring 2 (incl wall) at void ratio of outer fill (= 3.142*(D2+Twall)^2*d*VR m3)
M5-60 min	20	mm	Base Rainfall
D			Storm duration (in minutes)
r	0.25		Rainfall ration (From BRE 365 Figure 1)
Z1			Factor from BRE 365 Table 1 based on M5-D and 'r' from Fig 1
M5-D			Total rainfall in design storm duration D for 5-year return period (=Z1*D mm)
Location			England and Wales
Z2			Factor from BRE 365 Table 2 based on M5-D
M10-D			Total rainfall in design storm duration D for 10 year return period (=M5-D*Z2 mm)
R			=M10-D
1			Total inflow to soakaway (=A*R/1000 m3)
L			Minimum length for side of square pit [= -O/L + (O/L^2+4*[Vol Pit/L2]*Y)^0.5 / (2 * [Vol Pit/L²])]
A ₈₅₀			Internal surface area of soakaway to 50% effective depth; excl. base area
A.50 / L	2.20		
0			Outflow from soakaway (=A _{sto} *f*D m3)
Vol Pit			Effective storage volume of whole pit (ignoring the rings)
Vol Pit/L ²	0.33		
x	0.78		= (VoIR1+VoIR2)-(VoidR1+VoidR2)
Y			Inflow (I) minus value X

			Inflow					
D minutes	Z1	M5-D mm	Z2	R=M10-D mm	I=A*R	O/L	Y	L (m)
5	0.33	6.60	1.19	7.85	3.65	0.0290	2.87	2.91
10	0.48	9.60	1.22	11.71	5.45	0.0579	4.67	3.67
15	0.58	11.60	1.24	14.38	6.69	0.0869	5.91	4.10
30	0.76	15.20	1.24	18.85	8.76	0.1738	7.99	4.66
60	1.00	20.00	1.24	24.80	11.53	0.3477	10.75	5.21
120	1.27	25.40	1.22	30.99	14.41	0.6954	13.63	5.46
240	1.64	32.80	1.19	39.03	18.15	1.3908	17.37	5.45
260	1.88	37.60	1.17	43.99	20.46	1.5066	19.68	5.77
600	2.24	44.80	1.14	51.07	23.75	3.4769	22.97	4.60
1440	3.10	62.00	1.13	70.06	32.58	8.3445	31.80	3.36

For square pit:

Critical Length L = 5.77 m Time to Empty 50% = 2.93 hrs

Consider rectangular alternative:

Perimeter P = 4*L = 2*A + 2*B

Adopt A = 5.77 1.20 3.00 m Then B = 5.77 10.34 8.54 m

SA 2.xls - 14/04/17

6/8

Job No C2155 Date 13/04/17
Project Llanellen Court Access Road SOAKAWAY SA3 By DA

SOAKAWAY DESIGN TO BRE 365

A	480 m2	Impermeable Surface Area of Catchment
f	4.71E-05 m/sec	Infiltration rate f of soil into which soakaway drains
d	1.1 m	Effective storage depth of soakaway
VR	0.3	Free volume (void) ratio of fill to pit around rings
Twall	0.07 m	Wall Thickness of rings
D1	1.2 m	Internal diameter of Ring 1
Vol R1	1.24	Storage capacity of ring 1 (= 3.142 * (D1*0.5)^2 * d m3)
Void R1	0.465	Equivalent volume of Ring 1 (incl wall) at void ratio of outer fill (= 3.142*(D1+Twall)^2*d*VR m3)
D2	0 m	Internal diameter of Ring 2
Vol R2	0.00	Storage capacity of ring 2 (= 3.142 * (D2*0.5)^2 * d m3)
Void R2	0.000	Equivalent volume of Ring 2 (incl wall) at void ratio of outer fill (= 3.142*(D2+Twall)^2*d*VR m3)
M5-60 min	20 mm	Base Rainfall
D		Storm duration (in minutes)
r	0.25	Rainfall ration (From BRE 365 Figure 1)
Z1		Factor from BRE 365 Table 1 based on M5-D and 'r' from Fig 1
M5-D		Total rainfall in design storm duration D for 5-year return period (=Z1*D mm)
Location		England and Wales
Z2		Factor from BRE 365 Table 2 based on M5-D
M10-D		Total rainfall in design storm duration D for 10 year return period (=M5-D*Z2 mm)
R		=M10-D
1		Total inflow to soakaway (=A*R/1000 m3)
L		Minimum length for side of square pit [= -O/L + (O/L^2+4*[Vol Pit/L2]*Y)^0.5 / (2 * [Vol Pit/L^2])]
A.50		Internal surface area of soakaway to 50% effective depth; excl. base area
A.50 / L	2.20	
0		Outflow from soakaway (=A _{so} *f*D m3)
Vol Pit		Effective storage volume of whole pit (ignoring the rings)
Vol Pit/L ²	0.33	
X	0.78	= (VoIR1+VoIR2)-(VoidR1+VoidR2)
Y		Inflow (I) minus value X

			Inflow					
D minutes	Z1	M5-D mm	Z2	R=M10-D mm	I=A*R	O/L	Y	L (m)
5	0.33	6.60	1.19	7.85	3.77	0.0311	2.99	2.96
10	0.48	9.60	1.22	11.71	5.62	0.0621	4.84	3.74
15	0.58	11.60	1.24	14.38	6.90	0.0932	6.13	4.17
30	0.76	15.20	1.24	18.85	9.05	0.1864	8.27	4.73
60	1.00	20.00	1.24	24.80	11.90	0.3728	11.13	5.27
120	1.27	25.40	1.22	30.99	14.87	0.7456	14.10	5.50
240	1.64	32.80	1.19	39.03	18.74	1.4912	17.96	5.46
260	1.88	37.60	1.17	43.99	21.12	1.6154	20.34	5.78
600	2.24	44.80	1.14	51.07	24.51	3.7279	23.74	4.54
1440	3.10	62.00	1.13	70.06	33.63	8.9471	32.85	3.28

For square pit:

Critical Length L = 5.78 mTime to Empty 50% = 2.74 hrs

Consider rectangular alternative:

Perimeter P = 4*L = 2*A + 2*B

Adopt A = 5.78 1.20 Then B = 5.78 10.35 3.00 m 8.55 m

SA 3.xls - 14/04/17

Job No C2155 Date 13/04/17
Project Llanellen Court Access Road SOAKAWAY SA4 By DA

SOAKAWAY DESIGN TO BRE 365

A	406 m	12	Impermeable Surface Area of Catchment
1	4.71E-05 m	/sec	Infiltration rate f of soil into which soakaway drains
d	1.1 m		Effective storage depth of soakaway
VR	0.3		Free volume (void) ratio of fill to pit around rings
Twall	0.07 m	1	Wall Thickness of rings
D1	1.2 m	1	Internal diameter of Ring 1
Vol R1	1.24		Storage capacity of ring 1 (= 3.142 * (D1*0.5)^2 * d m3)
Void R1	0.465	1	Equivalent volume of Ring 1 (incl wall) at void ratio of outer fill (= 3.142*(D1+Twall)^2*d*VR m3)
D2	0 m	1	Internal diameter of Ring 2
Vol R2	0.00		Storage capacity of ring 2 (= 3.142 * (D2*0.5)^2 * d m3)
Void R2	0.000	1	Equivalent volume of Ring 2 (incl wall) at void ratio of outer fill (= 3.142*(D2+Twall)^2*d*VR m3)
M5-60 min	20 mi	m l	Base Rainfall
D			Storm duration (in minutes)
	0.25	F	Rainfall ration (From BRE 365 Figure 1)
Z1		F	Factor from BRE 365 Table 1 based on M5-D and 'r' from Fig 1
M5-D		1	Total rainfall in design storm duration D for 5-year return period (=Z1*D mm)
Location			England and Wales
Z2		F	Factor from BRE 365 Table 2 based on M5-D
M10-D		1	Total rainfall in design storm duration D for 10 year return period (=M5-D*Z2 mm)
R			=M10-D
1		7	Total inflow to soakaway (=A*R/1000 m3)
L			Minimum length for side of square pit [= -O/L + (O/L^2+4*[Vol Pit/L2]*Y)^0.5 / (2 * [Vol Pit/L²])]
A ₀₅₀			Internal surface area of soakaway to 50% effective depth; excl. base area
A.50 / L	2.20		
0		(Outflow from soakaway (=A _{so} *f*D m3)
Vol Pit			Effective storage volume of whole pit (ignoring the rings)
Vol Pit/L ²	0.33		
X	0.78	=	= (VoIR1+VoIR2)-(VoidR1+VoidR2)
Y		li	Inflow (I) minus value X

100			Inflow					
D minutes	Z1	M5-D mm	Z2	R=M10-D mm	I=A*R	O/L	Y	L (m)
5	0.33	6.60	1.19	7.85	3.19	0.0311	2.41	2.66
10	0.48	9.60	1.22	11.71	4.76	0.0621	3.98	3.38
15	0.58	11.60	1.24	14.38	5.84	0.0932	5.06	3.78
30	0.76	15.20	1.24	18.85	7.65	0.1864	6.87	4.29
60	1.00	20.00	1.24	24.80	10.07	0.3728	9.29	4.77
120	1.27	25.40	1.22	30.99	12.58	0.7456	11.80	4.96
240	1.64	32.80	1.19	39.03	15.85	1,4912	15.07	4.87
260	1.88	37.60	1.17	43.99	17.86	1.6154	17.08	5.15
600	2.24	44.80	1.14	51.07	20.74	3.7279	19.96	3.96
1440	3.10	62.00	1.13	70.06	28.44	8.9471	27.67	2.80

For square pit:

Critical Length L = 5.15 m Time to Empty 50% = 2.48 hrs

Consider rectangular alternative:

Perimeter P = 4*L = 2*A + 2*B Adopt A = 5.15 1.2

Adopt A = 5.15 1.20 3.00 m Then B = 5.15 9.10 7.30 m

SA 4.xls - 14/04/17

Job No

Project Based on BRE Digest 365 Worked Example page 7.

SOAKAWAY DESIGN TO BRE 365

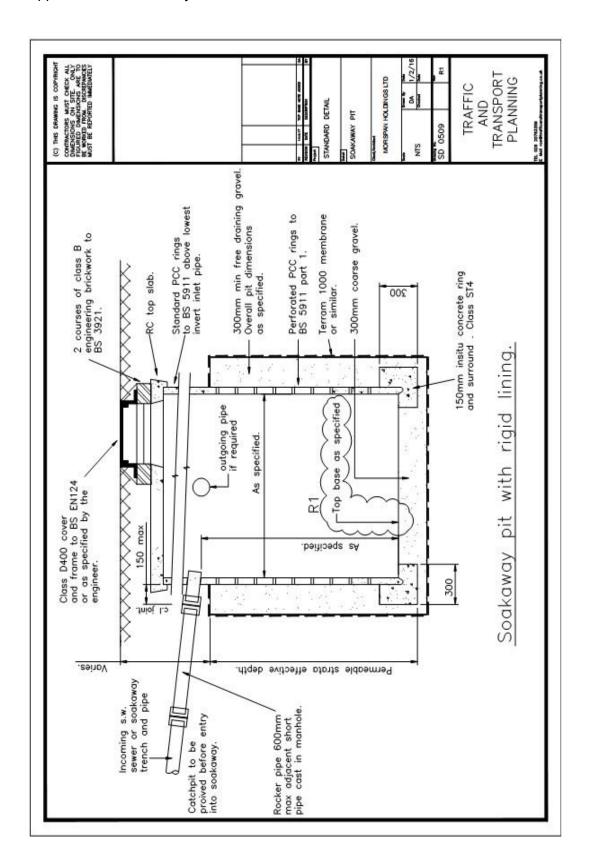
A	🥕 🧓 95 m2	Impermeable Surface Area of Catchment
T.	3,30E-05 m/sec	Infiltration rate f of soil into which soakaway drains
d	1.5 m	Effective storage depth of soakaway
VR	0.3	Free volume (void) ratio of fill to pit around rings
Twall	0.07 m	Wall Thickness of rings
D1	0.9 m	Internal diameter of Ring 1
Vol R1	0.95	Storage capacity of ring 1 (= 3.142 * (D1*0.5)*2 * d m3)
Void R1	0.382	Equivalent volume of Ring 1 (incl wall) at void ratio of outer fill (= 3.142*[D1+Twall)^2*d*VR m3)
D2	'~ 0 m	Internal diameter of Ring 2
Vol R2	0,00	Storage capacity of ring 2 (= 3.142 * (D2*0.5)*2 * d m3)
Void R2	0.000	Equivalent volume of Ring 2 (incl wall) at void ratio of outer fill (= 3.142*(D2+Twall)*2*d*VR m3)
M5-60 min	20 mm	Base Rainfall
D		Storm duration (in minutes)
T.	0.35	Rainfall ration (From BRE 365 Figure 1)
Z1		Factor from BRE 365 Table 1 based on M5-D and 'r' from Fig 1
M5-D		Total rainfall in design storm duration D for 5-year return period (=Z1*D mm)
Location		England and Wales
Z2		Factor from BRE 365 Table 2 based on M5-D
M10-D		Total rainfall in design storm duration D for 10 year return period (=M5-D*Z2 mm)
R		=M10-D
1.		Total inflow to soakaway (=A*R/1000 m3)
Ļ		Minimum length for side of square pit [= -O/L+(O/L*2+4*[Vol Pat(2]*Y)*0.5 / (2 * [Vol Pat(2]))]
Asso		Internal surface area of so akaway to 50% effective depth, excl. base area
A _{sto} /L	3.00	
o		Outflow from soakaway (=A _{so} ***D m3)
Vol Pit		Effective storage volume of whole pit (ignoring the rings)
Voi Pit/L2	0.45	and a service of the
×	0.57	= (VoIR1+VoIR2)-(VoidR1+VoidR2)
A		Inflow (I) minus value X

ľ					777			
D minutes	Z 1	MS-D mm	72	R=M10-D mm	I=A*R	0/L	*	L(m)
5	0.34	6.80	1.19	8,09	0.77	0.0297	0.20	0.63
10	0.49	9,80	1.22	11.96	1.14	0.0594	0.56	1,06
15	0.59	11.80	1.24	14.63	1.39	0.0891	0.82	1.25
30	0.77	15.40	1.24	19.10	1:81	0.1762	1.24	1.48
60	1.00	20.00	1.24	24.80	2.36	0.3564	1.78	1,63
120	1.25	25.00	1.22	30.50	2.90	0.7128	2.33	1.62
240	1.57	31.40	1.19	37.37	3.55	1,4256	298	1.44
260	1.78	35.60	1.17	41.65	3.96	1,5444	3,38	1.52
600	2.12	42.40	1.14	48.34	4.59	3,5640	4.02	1.00
1440	2.84	56.80	1.13	64.18	6.10	8,5536	5.53	0.63

For square pit:

Critical Length L = 1.63 m Time to Empty 50% = 1.52 hrs

Consider rectangular afternative:


Perimeter P = 4*L = 2*A + 2*B

Adopt A = 1.63 0.90 Then B = 1.63 2.37

8.00 m -4.73 m

Soakaway design 2xls - 15/04/17

Appendix E Soakaway Detail

