

Monmouthshire Strategic Flood Consequences Assessment

Final

Prepared for

Monmouthshire County Council

County Hall,

The Rhadyr,

Usk.

NP15 1GA.

Date

October 2025

Document Status

Issue date October 2025

Issued to Monmouthshire County Council

BIM reference QEW-JBA-XX-XX-RP-Z-0002-D3-C01-Monmouthshire SFCA

Revision Version 1

Prepared by Hannah Booth BSc (Hons)

Analyst

Reviewed by Faye Tomalin BSc (Hons) MSc MCIWEM C.WEM

Principal Analyst

Authorised by Faye Tomalin BSc (Hons) MSc MCIWEM C.WEM

Project Director

Carbon Footprint

The format of this report is optimised for reading digitally in pdf format. Paper consumption produces substantial carbon emissions and other environmental impacts through the extraction, production and transportation of paper. Printing also generates emissions and impacts from the manufacture of printers and inks and from the energy used to power a printer. Please consider the environment before printing.

Accessibility

JBA aims to align with <u>governmental guidelines on accessible documents</u> and <u>WGAG 2.2</u> AA standards, so that most people can read this document without having to employ special adaptation measures. This document is also optimised for use with assistive technology, such as screen reading software.

Contract

JBA Project Manager Peter Rook

Address 35 Perrymount Road Haywards Heath West Sussex RH16

3BW

JBA Project Code 2025s0977

This report describes work commissioned by Monmouthshire County Council, by an instruction dated 08 August 2025. Hannah Booth of JBA Consulting carried out this work.

Purpose and Disclaimer

Jeremy Benn Associates Limited ("JBA") has prepared this Report for the sole use of Monmouthshire County Council and its appointed agents in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to Monmouthshire County Council for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

JBA disclaims any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to JBA's attention after the date of the Report.

The methodology adopted and the sources of information used by JBA in providing its services are outlined in this Report. The work described in this Report was undertaken between 08 August 2025 and 31st October 2025 and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by JBA has not been independently verified by JBA, unless otherwise stated in the Report.

Acknowledgements

JBA would like to acknowledge LPA and LLFA staff from Monmouthshire County Council for their input into the SFCA.

Copyright

© Jeremy Benn Associates Limited 2025

Contents

Exe	cutive Summa	ıry	5
1	Introduction	n	7
	1.1	Project Overview	7
	1.2	Monmouthshire Replacement Local Development Plan overview	7
	1.3	Stages of Strategic Flood Consequences Assessments (SFCAs)	8
	1.4	Strategic Flood Consequences Assessment Objectives	9
	1.5	Stakeholder Engagement	10
	1.6	Structure of the Strategic Flood Consequences Assessment	10
2	Study Area		12
	2.1	Geographic Extent	12
	2.2	Topography	13
	2.3	Geology, Hydrogeology and Soils	14
	2.4	Watercourses and Catchments	15
3	Policy and	Strategy	16
	3.1	Legislation	16
	3.2	National Policy	20
	3.3	Technical Advice Note 15: Development, Flooding and Coastal Erosion	22
	3.4	Regional Policy	31
	3.5	Local Policy	32
4	Understand	ling of flood risk	33
	4.1	Likelihood and Consequence	33
	4.2	Sources of Flooding	35
	4.3	Roles and responsibilities for managing flood risk	41
	4.4	Sources of information used in preparing the Strategic Flood Consequences Assessment	42
	4.5	Current pipeline of Flood and Coastal Erosion Risk Management (FCERM) projects	46
5	Flood Risk	Review	48
	5.1	Historical flooding	48
	5.2	Flood Risk from Rivers	51

	5.3	Risk of Flooding from Seas	53
	5.4	Surface Water and Small Watercourses	54
	5.5	Groundwater flood depths	55
	5.6	Sewer flooding	56
	5.7	Flooding from artificial sources	57
6	Flood Risk	Appraisal	59
7	Requireme	ents for a Flood Consequences Assessment	62
	7.1	What is a site-specific Flood Consequences Assessment?	62
	7.2	When are site-specific Flood Consequences Assessment's required?	62
	7.3	What are the requirements of a site-specific Flood Consequent	
	7.5	Assessment?	62
8	Flood Con	sequences Assessment Guidance	64
	8.1	Use of Defended Zones and Flood Defences	64
	8.2	Urban Centres and Land Use – Resilience of Existing	
		Communities	66
	8.3	Surface Water and Small Watercourse Risk and TAN-15	67
	8.4	Groundwater Flood Risk and TAN-15	68
	8.5	Flood Risk from Sewers and TAN-15	69
	8.6	Climate Change – lifetime of development	69
9	Developme	ent and Resilience to Flood Risk	70
	9.1	Realignment	70
	9.2	Resistance and Resilience	74
	9.3	Flood Response Planning	75
10	Working W	ith Natural Processes and Natural Flood Management	78
11	Summary		83
A	Flood Risk	x Mapping	A -1
В	Flood Risk	(Appraisal	B-2

1 101	\sim t	-10	ures
-100	\sim 1	1 14	ıdı CO
		J	,

Figure 1-1 Outline of the SFCA process	8
Figure 2-1 Study area	12
Figure 2-2 1m LiDAR data	14
Figure 2-3 River catchments in Monmouthshire	15
Figure 3-1 Four Pillars of SuDS (CIRIA, 2015)	19
Figure 3-2 Navigating TAN-15 requirements	23
Figure 4-1 Source - Pathway - Receptor model	33
Figure 4-2 Overview of Roles and Responsibilities (taken from the National Strategy f Flood and Coastal Erosion Risk Management)	or 41
Figure 4-3 Gwent IDD in Monmouthshire	42
List of Tables	
Table 2-1 Key settlements	13
•	17
Table 3-1 Key LLFA Responsibilities Table 3-2 TAN-15 definition of FMfP flood zones	24
	24 27
Table 3-3 Form of Development	
Table 3-4 TAN-15 Vulnerability Classification	27
Table 3-5 Flood frequency requirements	29
Table 3-6 Tolerable conditions in an extreme flood event	30
Table 4-1 Assessment of Climate Change for all sources of flooding	39
Table 4-2 JBA Groundwater flood risk map categories	44
Table 4-3 Current pipeline of NRW FCERM projects	46
Table 4-4 MCC LLFA Pipeline FCERM Schemes	47
Table 5-1 Flooding incidents by year	49
Table 5-2 Sewer Flooding Incidents by Electoral Ward:	56
Table 6-1 Site Summary	60
Table 9-1 Flood codes and meanings	77
Table 10-1 Examples of WWNP and NFM	79

Abbreviations

Abbreviation	Definition		
AEP	Annual Exceedance Probability – the chance of an event with a particular magnitude occurring in each and every year		
AOD	Above Ordnance Datum		
AONB	Area of Outstanding Natural Beauty		
BBNP	Bannau Brycheiniog National Park		
CFMP	Catchment Flood Management Plan		
CIRIA	Construction Industry Research and Information Association		
DAM	Development Advice Map – shows areas at risk of flooding from rivers and the sea for the purposes of land-use planning		
DCWW	Dŵr Cymru Welsh Water		
FAS	Flood Alleviation Scheme		
FCA	Flood Consequences Assessment		
FBC	Full Business Case		
FCERM	Flood and Coastal Erosion Risk Management		
FMfP	Flood Map for Planning		
FRAW	Flood Risk Assessment Wales		
FRMP	Flood Risk Management Plan		
FWMA	Flood and Water Management Act		
IDD	Internal Drainage District		
JBA	Jeremy Benn Associates		
LLFA	Lead Local Flood Authority		
LPA Local Planning Authority			
Main River	A watercourse shown as such on the Main River Map, and for which NRW has responsibilities and powers		
NFM	Natural Flood Management		
Ordinary Watercourse	All watercourses that are not designated Main River. Local Authorities or, where they exist, IDDs have similar permissive powers as Natural Resources in relation to flood defence work. However, the riparian owner has the responsibility of maintenance.		
PFRA	Preliminary Flood Risk Assessment		
PPW	Planning Policy Wales (Edition 12)		
RBMP	River Basin Management Plan		
RMA	Risk Management Authorities		
SAB	SuDS Approval Body		
SFCA Strategic Flood Consequences Assessment			
SMP	Shoreline Management Plan		

Abbreviation	Definition		
SuDS	Sustainable Drainage Systems		
TAN-15	Technical Advice Note 15 – Development, Flooding and Coastal Erosion. Guidance for Local Planning Authorities to reduce flood risk and develop away from high risk areas.		
WFD	Water Framework Directive		
WWNP	Working With Natural Processes		

Executive Summary

This Strategic Flood Consequences Assessment (SFCA) has been commissioned by Monmouthshire County Council to support the development of its Replacement Local Development Plan (LDP) 2018-2033. The SFCA provides a robust evidence base to inform land allocation decisions and planning policies, ensuring that future development is sustainable and resilient to flood risk.

The study has identified areas at potential high risk from flooding, as well as providing details of historical flood events and details of any flood risk management structures or procedures present.

This SFCA also provides information on the considerations for slowing and storing water within the catchment as part of Natural Flood Management opportunities, as well as guidance on implementing Technical Advice Note 15 (TAN-15) 2025 and managing flood risk in a development site.

Study Area

The SFCA covers the Monmouthshire County Council authority area, excluding the Bannau Brycheiniog National Park. Monmouthshire is predominantly rural, with diverse topography ranging from upland terrain to low-lying floodplains. The area includes key settlements such as Abergavenny, Usk, Chepstow, and Monmouth, and is influenced by several major river catchments including the Wye, Monnow, Usk and the tidal River Severn.

Policy and Strategy

Key legislation and policies have been reviewed as part of the SFCA, this includes national policies and strategies such as the National Flood and Coastal Erosion Risk Management (FCERM) Strategy for Wales, Future Wales: The National Plan 2040 and Planning Policy Wales (Edition 12). Regional documents such as Flood Risk Management Plans and River Basin Management Plans have also been reviewed to understand specific flood risk and coastal erosion policies in the region.

TAN-15 and other flood risk policy has also been reviewed and outlined with regard to flood risk.

Flood Risk Review

The SFCA has identified the risk of flooding from all sources across the study area and has provided information relating to the sources of information used to understand this flood risk.

Flood risk in Monmouthshire arises from multiple sources. The most significant source of flooding in Monmouthshire is flooding from rivers, particularly along the River Usk, Wye and Monnow. Coastal Flooding affects the southern extent of the authority area and results in flooding from the River Severn estuary, as well as the tidally influenced River Wye, Nedern Brook and Mill Reen/St Brides Brook. Tidal flood risk is generally considered to be low with settlements in these areas defended by NRW tidal flood defences. Surface water and small

watercourse flooding poses a risk in urban areas including Usk, Abergavenny, Monmouth and Caldicot. Groundwater flood risk is not widespread across the county. Where groundwater flooding is predicted, the areas most at risk are often low-lying areas where the water table is more likely to be at a shallow depth. Flooding can be experienced through water rising up from the underlying aquifer or from water flowing from springs. Sewer flooding has been recorded in several electoral wards (the level to which Dŵr Cymru Welsh Water report), with the highest number of flood incidents occurring in the Caerwent, Priory and Cantref wards. Reservoir flooding is unlikely but could have severe consequences in the event of a breach.

Requirements for a Flood Consequences Assessment

FCAs are required for developments in Flood Map for Planning Rivers, Sea and Surface Water Flood Zones 2 and 3, TAN-15 Defended Zones, and areas with known flood risk. The SFCA provides guidance on when and how FCAs should be undertaken, including consideration of climate change impacts and development lifetimes.

Flood risk mitigation and flood response planning

TAN-15 outlines the complementary role that planning and building regulations have in flood management, and the requirement for the use of flood mitigation and the implementation of resistance measures to ensure the consequences of flooding are acceptable. Where development is acceptable in Zones 2 and 3 and TAN-15 Defended Zones, it must have resilience to flooding built in at the site and property level. Where possible, development should still be directed to Flood Zone 1 (where there is a lower risk of flooding) in the first instance.

Measures to reduce, control or mitigate the impact and consequences of flooding and to improve the ability of people and property to adapt, respond to, and recover from flooding are provided in the report.

Advice and guidance on working with natural processes and natural flood management have also been prepared.

1 Introduction

1.1 Project Overview

This Stage 1 and Stage 2 Strategic Flood Consequences Assessment (SFCA) has been commissioned by the Monmouthshire County Council Local Planning Authority (LPA).

This SFCA provides a robust evidence base to inform the Monmouthshire Replacement Local Development Plan (RLDP) (2018 -2033) and will inform the development of both policies and land allocation decisions. The SFCA has been carried out in accordance with the Welsh Government's development planning guidance, Planning Policy Wales Edition 12 (PPW), Technical Advice Note 15: Development, Flooding and Coastal Erosion (TAN-15) 2025, and Welsh Government Flood Consequences Assessment (FCA) Climate Change allowances.

1.2 Monmouthshire Replacement Local Development Plan overview

A review of the Monmouthshire Local Development Plan 2011 – 2021 was undertaken in 2018. The findings were set out in the LDP Review Report which identified any changes likely to be needed to the LDP, based on evidence. The report recommended that the Council commence preparing a Replacement Local Development Plan (RLDP).

As part of the plan preparation process, the Council invited landowners, developers and the public to put forward 'candidate sites' to be considered for development, redevelopment or protection in the Monmouthshire RLDP. Stage 1 of this process involved an Initial Call for Candidate Sites for 16 weeks from the 30th July 2018 to 19th November 2018. The Second Call for Candidate Sites took place alongside the consultation on the second RLDP Preferred Strategy from the 5th July 2021 to 31st August 2021. The purpose of this was to allow the submission of new candidate sites considered to conform with the Preferred Strategy, and the submission of additional supporting information for those sites submitted during the Initial Call for Sites that accord with the Preferred Strategy and satisfied the high-level assessment. As part of the preparation of the Deposit RLDP, each candidate site has been assessed in accordance with the Candidate Site Assessment Methodology.

In 2022, JBA Consulting undertook a Stage 1 SFCA and high-level candidate site assessment for the Monmouthshire LPA to feed into the preparation of the Deposit Plan. The Stage 1 SFCA formed a regional approach to assessment, included within the South-East Wales SFCA reporting. The high-level candidate site assessment provided an initial screening of sites to determine the impact of flood risk and the likelihood of viable development in accordance with policy and available mapping at the time. This Stage 1 SFCA was prepared under the draft consultation version of TAN-15; considered the best available information and steer on forthcoming policy at the time. The update to TAN-15 was subsequently released in 2025.

MCC consulted on its Deposit RLDP between the 4th November and 16th December 2024. Welsh Government agreed a revised Delivery Agreement on 25th October 2024 which sets

out the amended timetable for plan preparation. This consultation used the Stage 1 SFCA and candidate site assessment as part of its evidence base. Due to the subsequent release of TAN15 in 2025, the SFCA is being revised and updated to reflect the updated policy document. This SFCA forms a standalone document for MCC, only.

1.3 Stages of Strategic Flood Consequences Assessments (SFCAs)

To provide a robust assessment of the potential flood risk, SFCAs should involve the collection, analysis, and presentation of all the available information from all sources of flood risk in the study area.

Typically, SFCAs are completed in three stages, with an increasing level of detail required in the analysis at each stage. The three stages of SFCAs are summarised below in Figure 1-1:

Stage 1

The Stage 1 SFCA is a desk-based study which collates existing information to undertake a broad assessment of potential flood risks across the entire study area from all sources of flooding. The study identifies areas at potential high risk from flooding as well as providing details of historical flood events and any details of any flood risk management structures or procedures present.

The SFCA also provides information on the opportunities to slow and store water as part of natural flood management schemes as well as guidance on implementing TAN-15 and managing flood risk in a development site.

Stage 2

The Stage 2 SFCA provides an assessment of LDP Candidate Sites which have been identified as being at risk of flooding. The assessment identifies the flood depths, velocities and probability of flooding using detailed flood models, as well as the risk of a flood defence structure breaching or overtopping.

If an LPA requires a hydraulic model to be used to assess the risk of flooding to a site, an NRW hydraulic model can be used. Where a model is not available, a model should be developed.

Stage 3

The Stage 3 SFCA involves the testing that the flood risk to any proposed LDP Candidate Sites can be managed to an acceptable level and that the site itself will not exacerbate flooding elsewhere over the lifetime of the development. It should also be shown that practicable mitigation measures can be implemented to manage flood risk. This stage is likely to be carried out by the proposer of the site.

Figure 1-1 Outline of the SFCA process

1.4 Strategic Flood Consequences Assessment Objectives

This report fulfils the aims and objectives of a Stage 1 and Stage 2 SFCA as follows:

Stage 1

- To inform development regarding the management of flood risk within the Local Planning Authorities Individual Local Development Plans and a Regional Strategic Development Plan.
- To understand flood risk from all sources and to investigate and identify the
 extent and severity of flood risk throughout the Stage 1 study area. This
 assessment will enable the Authorities to steer development away from those
 areas where flood risk is considered greatest, ensuring that areas allocated for
 development can be developed in a safe, cost effective, and sustainable manner.
- To evaluate and consider flood risk from river, sea, and surface water sources, using Natural Resources Wales' Flood Map for Planning (FMfP). Other sources of flooding including groundwater and artificial sources such as reservoirs and sewers should also be considered.
- To consider the role and integrity of coastal defences and provide an understanding of the risks posed by coastal flooding and erosion, making reference to Shoreline Management Plan (SMP) policies and the Welsh National Marine Plan.
- To enable the Authorities to meet their obligations under PPW and TAN-15.
- To supplement current policy guidelines and to provide a straightforward riskbased approach to development management in the area. This is aimed at Councillors, Local Planning Authorities, the public, and developers.
- To provide a reference document to which all parties involved in development planning and flood risk can reliably turn to for initial advice and guidance.
- To provide an evidence base as part of an informed development management process that also provides guidance on the potential risk of flooding associated with future planning applications, and the basis for site specific FCAs where necessary.
- To assist the Authority in identifying specific areas where further and more detailed flood risk data and assessment work may be required.
- To provide an update to the authority's previous SFCA using new and updated flood risk information to summarise flood risks to each Authority area.
- To produce maps showing the flood risk to settlements as specified by the Local Planning Authority.

Stage 2

- To identify the risk of flooding to proposed development sites which are in the process of being considered for their suitability as allocated sites within an LDP.
- To consider flood mitigation measures which could be implemented for such sites.

 To determine whether development could be made safe without increasing flood risk elsewhere

It is important to highlight that this SFCA is strategic in nature and makes use of the most current available information. This SFCA should be used as a starting point for planners, developers, and the public to initially consider development and flood risk and to determine whether more detailed, site specific assessments of flood risk, such as an FCA, are required.

1.5 Stakeholder Engagement

The following stakeholders have been consulted during the preparation of this SFCA:

- Monmouthshire County Council
- Lead Local Flood Authority (including SAB)
- Natural Resources Wales
- Welsh Government
- Dŵr Cymru Welsh Water (DCWW)

1.6 Structure of the Strategic Flood Consequences Assessment

Section	Contents
Introduction	Provides a background to the study, defines objectives, outlines the approach adopted and the consultation performed.
Study Area	Includes an overview of the study area including information on the topography, geological, and hydrological characteristics of the area.
Policy and Strategy	Includes information on the implications of recent changes to planning and flood risk policies and legislation, as well as documents relevant to the study.
Understanding of Flood Risk	Introduces the assessment of flood risk and provides an overview of the different types and sources of flooding in the study area.
Flood Risk Review	Provides a review of flood risk from all sources for the Monmouthshire County Council local planning authority area.
Flood Risk Appraisal	Provides a summary of the candidate sites provided by Monmouthshire County Council, which have been assessed to determine the risk of flooding.
Requirements for a Flood Consequences Assessment	Outlines what an FCA is and the requirements for an FCA.
Flood Consequences Assessment Guidance	Outlines further guidance on how guidance in TAN-15 should be applied.

Section	Contents	
Development and Resilience to Flood Risk	Outlines methods to increase the resilience of a development.	
Working with Natural Processes and Natural Flood Management	Includes information on areas which could be suitable for implementing natural flood management measures.	
Summary	A summary of the key report findings.	
Appendices	Outline, individual and settlement maps for the Monmouthshire RLDP area.	

Where local guidance or policies have been incorporated into this SFCA, they are set out within blue boxes, such as this. This aims to highlight developer parameters, requirements and exceptions of MCC in respect to development and flood risk. All local policies have been reviewed and agreed by the LPA, LLFA, and SAB, with other stakeholders consulted where appropriate.

2 Study Area

2.1 Geographic Extent

The study area is formed of the Monmouthshire LPA area. The Bannau Brycheiniog National Park (BBNP), shown by the hatched area in Figure 2-1, will not be covered by the SFCA as this forms a separate LPA area.

The Monmouthshire LPA is bordered by seven other LPAs:

- Newport City Council
- Torfaen County Borough Council
- Blaenau Gwent County Borough Council
- Powys County Council
- Herefordshire County Council
- Forest of Dean District Council
- South Gloucestershire Council

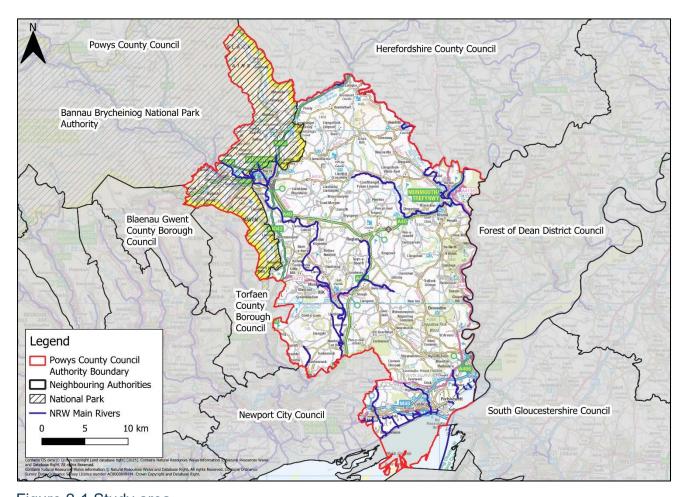


Figure 2-1 Study area

The study area is predominantly rural with the majority of its residents living in its main towns and villages. The population of Monmouthshire as of mid-2020 (latest available data) was approximately 91,300, inclusive of the BBNP. The Monmouthshire authority area has its own distinct settlements, a summary of which is provided in Table 2-1.

Table 2-1 Key settlements

Primary Settlements	Secondary Settlements
Abergavenny (inc. Llanfoist)	Usk
Monmouth	Raglan
Chepstow	Penperlleni
Caldicot including the Severnside settlements of	
Magor/Undy, Caerwent, Crick, Rogiet,	
Portskewett and Sudbrook	

2.2 Topography

Topography varies significantly with higher ground elevations to the north and north-west of the county, where the southern extents of the Black Mountains and the border with the BBNP are located. The River Usk flows into Monmouthshire north-west of Abergavenny, with the River Wye entering the county north of Monmouth, resulting in wide valley-like topography.

The southern extent of Monmouthshire is bounded by the River Severn and the Severn Estuary. Here the topography is much flatter across the area known as the Gwent Levels which stretches from the southwestern county boundary near Magor and Undy, to the southeastern boundary at Chepstow and the River Wye.

Topographic information, as shown in Figure 2-2, has been derived from the NRW 1m LiDAR mapping.

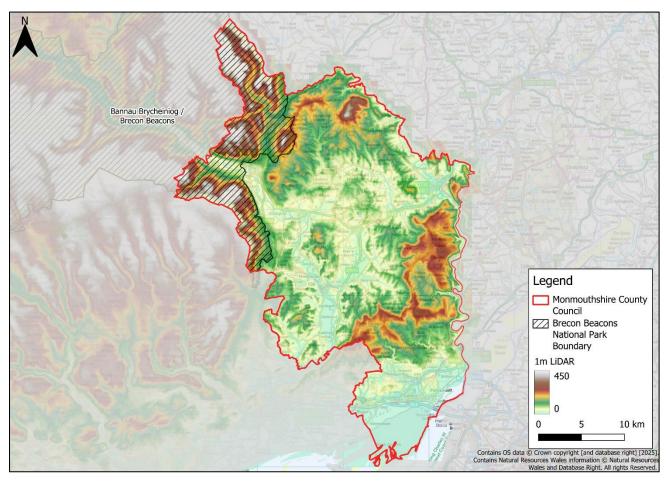


Figure 2-2 1m LiDAR data

2.3 Geology, Hydrogeology and Soils

Monmouthshire has a varied bedrock geology, predominantly dominated by Lower Devonian Rocks formation within the northern and eastern area of the authority area. This formation comprises mudstone, siltstone and sandstone.

The Pridoli Rocks formation is present in the centre of Monmouthshire and is comprised of mudstone, siltstone and sandstone. Other formations within the authority area are Ludlow Rocks formation, Silurian Rocks formation and Wenlock Rocks Formation in the western extent of the authority area. In the south of the county, bedrock geology is comprised of Upper Devonian Rocks formation, Dinantian Rocks formation and Triassic Rocks formation.

Mudstone is formed from fine grains of clay and mud and is relatively impermeable. Siltstone is formed from larger particles which are predominantly silt. Sandstone is formed from even larger 'sand sized' particles. In contrast to mudstone and siltstone rock types, sandstone is usually porous enough to allow percolation and can store large volumes of water.

Across Monmouthshire, soils are largely described as 'freely draining slightly acid loamy soils' and 'slightly acid loamy and clayey soils with impeded drainage' and 'freely draining acid loamy soils over rock'.

2.4 Watercourses and Catchments

The main river catchments in Monmouthshire are the Wye and Usk catchments, as shown in Figure 2-3. These are further discussed below.

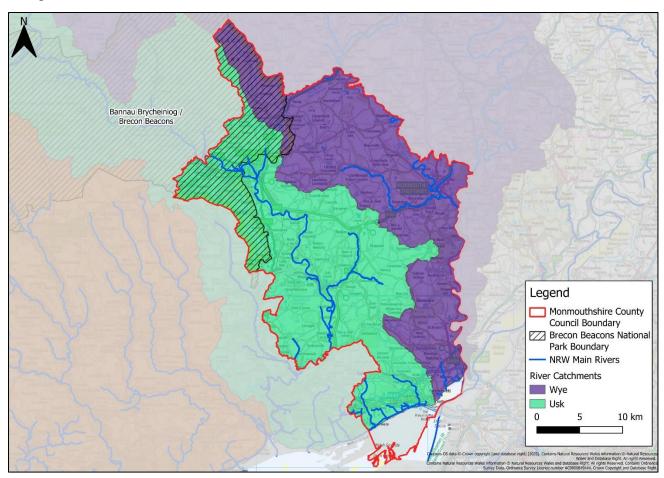


Figure 2-3 River catchments in Monmouthshire

Usk

The River Usk catchment covers the western extent of the authority area. The River Usk has its source on the slopes of Black Mountain, in the westernmost part of the BBNP. It flows in a northerly direction before flowing into Usk Reservoir prior to flowing towards Sennybridge and Brecon. It flows in a south easterly direction into the county, through Crickhowell and Abergavenny before reaching Usk where it is joined by the Olway Brook. The river continues to flow south towards Newport before the water is released into the Bristol channel.

Wye

The River Wye catchment forms the eastern extent of the county. The river's source is in the Cambrian Mountains in mid-west Wales before flowing into England and forming the England Wales border in its lower reaches. The watercourse flows south-westerly into Wales at Monmouth, subsequently flowing in a predominantly southerly direction, following the eastern boundary of the county, before entering the Bristol Channel at Chepstow.

3 Policy and Strategy

3.1 Legislation

3.1.1 European Union Floods Directive and the Flood Risk Regulations

The European Floods Directive (2007) sets out the EU's approach to managing flood risk and aims to improve the management of the risk that floods pose to human health, the environment, cultural heritage and economic activity.

The Directive was translated into Welsh law by the Flood Risk Regulations (FRR) 2009 and outlines the requirement for Natural Resources Wales (NRW) and Lead Local Flood Authorities (LLFA) to create Preliminary Flood Risk Assessments (PFRAs), with the aim of identifying significant Flood Risk Areas.

PFRAs should cover the entire area for local flood risk (focusing on ordinary watercourses, surface water and groundwater flooding). Where significant Flood Risk Areas are identified using a national approach (and locally reviewed), the LLFA are then required to undertake flood risk hazard mapping and to produce Flood Risk Management Plans (FRMPs).

FRMPs need to consider objectives for flood risk management (reducing the likelihood and consequences of flooding) and measures to achieve those objectives.

NRW have produced National Flood Hazard Mapping which is based on generalised modelling as part of Flood Risk Assessment Wales. They have been created for three sources of flooding – rivers, the sea, surface water and small watercourses. The maps show flood depth, velocity, hazard, and extent for high, medium, and low risk scenarios, and include an allowance for climate change.

NRW has implemented one of the exceptions for creating PFRAs, etc for Main Rivers and coastal flooding, as they already have mapping (i.e. Risk of Flooding from Rivers and Sea Map) and plans (i.e. CFMPs) in place to deal with this. NRW has therefore focused their efforts on assisting LLFAs through this process.

3.1.2 Flood and Water Management Act

The Flood and Water Management Act (FWMA) was passed into law in April 2010. It aims to improve both flood risk management and the way water resources are managed.

The FWMA created clearer roles and responsibilities and instilled a more risk-based approach. This included a lead role for Local Authorities in managing local flood risk (from surface water, groundwater and ordinary watercourses) and a strategic overview role of all flood risk for NRW. Within this study area, Monmouthshire County Council is the Lead Local Flood Authority (LLFA).

The content and implications of the FWMA provide considerable opportunities for improved and integrated land use planning and flood risk management by Local Authorities and other key partners. The integration and synergy of strategies and plans at national, regional and

local scales, is increasingly important to protect vulnerable communities and deliver sustainable re-generation and growth. Table 3-1 provides an overview of the key LLFA responsibilities under the FWMA.

Table 3-1 Key LLFA Responsibilities

Responsibility	Description
Developing a Local Flood Risk Management Strategy	The LLFA is required to develop, maintain, apply and monitor its local strategy for flood risk management in its area. The local strategies build on information such as national risk assessments and use consistent risk-based approaches across different Authority areas and catchments. The Local Strategy is not secondary to the National Strategy; rather it has distinct objectives to manage local flood risks important to local communities.
Investigating Flood Incidents	An LLFA has a duty to investigate and record details of 'significant flooding' in its area, under Section 19 of the FWMA. The National Strategy for FCERM in Wales states that the Welsh Government expects Section 19 reports to be undertaken where 20 or more homes in one area experience internal flooding. However, Local Authorities may choose a lower threshold as it is noted that smaller scale floods are still capable of causing significant damage. What constitutes significant flooding is defined by each LLFA. This duty includes identifying Risk Management Authorities (RMA) and their functions and how they intend to exercise those functions in response to a flood. The responding RMA must publish the results of its investigation and notify other relevant RMAs.
Asset Register	An LLFA has a duty to maintain a register of structures or features, which are considered to have an effect on flood risk, including details on ownership and condition as a minimum. The register must be available for inspection, and the Welsh Ministers for Wales are able to make regulations about the content of the register and records.
Works Powers	The Act provides the LLFA with powers to do works to manage flood risk from surface water runoff, groundwater and ordinary watercourses, consistent with the local Flood Risk Management Strategy for the area.
Designation Powers	Schedule 1 of the Act provides the LLFA with powers to designate structures and features that affect flooding or coastal erosion. Only those structures and features related to flood risk management in respect of ordinary watercourse, surface water and groundwater flooding can be designated by an LLFA under this Act. The powers are intended to overcome the risk of a person damaging or removing a structure or feature that is on private land and which is relied on for flood or coastal erosion risk management. Once a feature is designated, the owner must seek consent to alter,

Responsibility	Description
	remove or replace it.
SuDS Approval Body	Schedule 3 of the Act establishes each Authority as a SuDS Approval Body (SAB). This is mostly likely to sit within the LLFA role but may be independent from this RMA. The SAB has responsibility for the approval of proposed surface water drainage systems in new developments and redevelopments, subject to exemptions and thresholds. Approval must be given before the developer commences construction. The SAB is also responsible for adopting and maintaining SuDS which serve more than one property, where they have been approved. Highways Authorities are responsible for maintaining SuDS in public roads, to National Standards.

3.1.3 Sustainable Drainage Systems (SuDS)

Disposal of surface water runoff is a key consideration, whether a development site falls within a flood risk area or not. Intense development within a catchment could result in increased runoff which if not appropriately managed could result in increased flooding within and downstream of the development area. Consequently, the impact of new developments on flood risk needs to be managed to avoid any negative impacts to the development itself and to other properties and assets within the catchment.

New developments can also increase pressure on sewer systems and urban drainage. It is therefore important to manage the impact of developments in a sustainable manner.

Sustainable Drainage Systems (SuDS) aim to mimic the natural processes of Greenfield surface water drainage by allowing water to flow along natural flow routes and also aims to reduce the runoff rates and volumes during storm events, whilst providing water treatment benefits. SuDS also have the advantage of providing Blue and Green Infrastructure, ecology and recreational benefits when designed and maintained properly.

Schedule 3 of the Flood and Water Management Act 2010 was enacted in Wales in January 2019, leading to the requirement for all new developments to incorporate the four pillars of SuDS design, shown in Figure 3-1. The statutory requirement for SuDS approval and the associated approval process is separate from planning permission, although there is a need for significant interactions and alignment between the two processes.

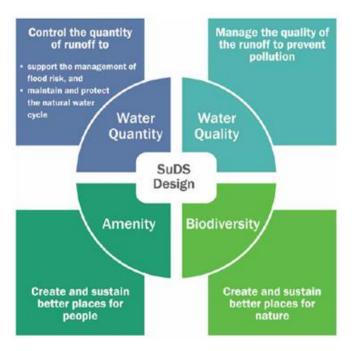


Figure 3-1 Four Pillars of SuDS (CIRIA, 2015)

There are a number of technical standards and design guidance for SuDS which are available in the documents listed below:

- Statutory standards for sustainable drainage systems designing, constructing, operating and maintaining surface water drainage systems (Welsh Government, 2018),
- C753 The SuDS Manual (Ciria, 2015),
- Rainfall Runoff Management for Developments SC030219 (Environment Agency, 2013),
- Planning Policy Wales (PPW) Edition 12, July 2024,
- The Building Regulations 2010 Part H: Drainage and Waste Disposal,
- Design and Construction Guidance for foul and surface water sewers (2023).

Whilst at the time of writing Monmouthshire County Council have not published specific local SuDS guidance, developers are strongly encouraged to engage with the SAB as early as possible at the conceptual design phase of new developments, and to engage in the SAB Pre-application process. This will allow the SAB to support developers throughout the SuDS design phase and provide guidance on acceptable technical details.

3.1.4 Water Framework Directive and Water Environment Regulations

The purpose of the Water Framework Directive (WFD) is to deliver improvements across Europe in the management of water quality and water resources. The first cycle of River Basin Management Plans (RBMP) and WFD required all inland and coastal waters to reach "good ecological status" by 2015 through a catchment-based system. Incorporating a programme of measures to improve the status of all natural water bodies. There is an

exception for "heavily modified water bodies", that are required to achieve "good ecological potential". The Water Environment Regulations (2003) transposed the WFD into law in England and Wales. NRW is leading on the delivery of the WFD in Wales.

The River Basin Management Plans for the Monmouthshire authority area are discussed in more detail in Section 3.4.2.

3.1.5 Wellbeing of Future Generations (Wales) Act 2015

The Well-being of Future Generations (Wales) Act 2015 places a duty on all public bodies to safeguard the well-being of future generations. The duty is based on the principle of sustainable development and requires public bodies to think about the long-term impact of their decisions, whilst collaborating with others, communities, and each other. The seven well-being goals listed within the Act aim to present Wales with an opportunity to make a long-lasting and positive change to current and future generations.

In terms of flood risk management, it is therefore important to ensure that developments do not occur in areas at risk of flooding, or where the risk of flooding cannot be managed to an acceptable level. Additionally, any flood risk management works should not result in an increase of flooding elsewhere. A precautionary approach is undertaken in this SFCA to ensure that the well-being of future generations is not compromised as a result of proposed development.

3.2 National Policy

3.2.1 Future Wales – The National Plan 2040

Future Wales is a national development framework which sets the direction for development in Wales to 2040. It is a development plan with a strategy for addressing key national priorities through the planning system, including achieving decarbonisation and climate resilience. Future Wales sets a direction for where investment should be made in infrastructure and development and makes clear the importance of planning new infrastructure and development in a way that ensures opportunities are maximised and multiple benefits are achieved.

Policy 8 of Future Wales sets out considerations for the future of Wales in terms of Flood Risk. It states that Flood Risk Management that enables and supports strategic growth and regeneration in National and Regional Growth areas shall be supported. Additionally, Welsh Government will work with authorities and developers to plan and invest in new and improved infrastructure, promoting nature-based solutions as a priority, where opportunities for social, economic and environmental benefits are maximised when investing in flood risk management infrastructure.

Policy 8 highlights that flood risk is a constraining factor to development, especially as a result of a large number of Wales' towns and cities being located on the coast or located alongside major rivers. It identifies that the likelihood of rising sea levels and increased rainfall caused by climate change means the risk of flooding is projected to increase over

the lifetime of the development and sustainable solutions will be required. The policy identifies that a strategic approach should be taken to prioritising development in places that are not at flood risk, followed by places where flood risk can be managed in an acceptable way. Policy 8 points towards the requirements of PPW and the requirements of Technical Advice Note 15: Development, Flooding and Coastal Erosion (TAN-15) to direct development away from areas at risk of flooding.

3.2.2 Planning Policy Wales

Planning Policy Wales (PPW) Edition 12 aims to ensure that the planning system contributes towards the delivery of sustainable development and improves the social, economic, environmental and cultural well-being of Wales, as required by the Planning (Wales) Act 2015, the Well-being of Future Generations (Wales) Act 2015 and other key legislation. It is supplemented by a series of Technical Advice Notes (TANs).

PPW addresses a wide range of issues including the placemaking of sustainable settlements, the location of new development, the commitment to the re-use of land and promoting sustainability through good design.

PPW indicates that Local Authorities should recognise in their policies the housing needs of all and must ensure that sufficient land is genuinely available, or will become available, to provide land for housing judged against the general objectives and the scale and location of development provided for in the development plan.

Paragraph 6.6.18 of PPW states that 'the provision of SuDS must be considered as an integral part of the design of the new development and considered at the earliest possible stage when formulating proposals for new development'.

Paragraph 6.6.22 of PPW refers to 'development and flood risk' and states that "Planning authorities should adopt a precautionary approach of positive avoidance of development in areas of flooding from the sea or from rivers. Surface water flooding will affect choice of location and the layout and design of schemes, and these factors should be considered at an early stage in formulating development proposals."

Paragraph 6.6.24 adds that "planning authorities [should] take a strategic approach to flood risk and consider the catchment as a whole by providing a preliminary representation of flood risks, which inform decisions on the location of new development and the requirements necessary to support any applications which may be proposed."

Paragraph 6.6.23 continues that "Government resources for flood and coastal defences are directed at protecting existing developments and are not available to provide defences in anticipation of future development." PPW then advises that a sustainable approach to flooding will involve avoiding development within areas at flood risk.

3.2.3 National FCERM Strategy for Wales

The <u>National FCERM Strategy for Wales</u>¹ was published in October 2020 and sets out how the Welsh Government intends to manage flood and coastal erosion risks in Wales over the next ten years. The Strategy has been drafted with a longer-term, strategic view, recognising the nature of flood and coastal erosion risk with respect to the challenges of climate change. It will work alongside other strategic plans for shoreline management, infrastructure and development planning.

With regard to managing flood and coastal erosion risk in Wales, the strategy sets out five high level objectives:

- Improving our understanding and communication of risk;
- Preparedness and building resilience;
- Prioritising investment to the most at risk communities;
- Preventing more people becoming exposed to risk;
- Providing an effective and sustained response.

Each of these objectives are related to specific measures and actions outlined in the national strategy. NRW report on the application of the national strategy through a Section 18 report every two years. This is reviewed by the Flood and Coastal Erosion Committee.

3.2.4 National Resources Policy

The focus of the Natural Resources Policy (NRP)² is on improving the way Wales manages its natural resources and forms a key part of the delivery framework for the sustainable management of natural resources established by the Environment (Wales) Act. The NRP sets out the opportunities and challenges that face Wales's natural resources and how these will be monitored and addressed. In relation to flooding the NRP highlights how careful management of ecosystems can play a crucial role in building resilience to the impacts of climate change such as flooding. It also highlights that there are opportunities to manage flooding by using Natural Flood Risk Management techniques across Wales with NRW aiming to increase the role of nature-based solutions in flood and water management.

3.3 Technical Advice Note 15: Development, Flooding and Coastal Erosion

Technical Advice Note 15: Development, flooding and coastal erosion (TAN-15) sets out the criteria against which the consequences of a development in an area at risk of flooding can be assessed.

TAN-15 was introduced in 2004 by the Welsh Government. It provided technical guidance related to development planning and flood risk using a sequential characterisation of risk based on the Development Advice Map (DAM). An update to TAN-15 was implemented on the 31st of March 2025, with the DAM replaced by the Flood Map for Planning (FMfP). This SFCA has been prepared in accordance with the updated TAN-15 guidance.

¹ https://gov.wales/national-strategy-flood-and-coastal-erosion-risk-management-wales

² https://gov.wales/sites/default/files/publications/2019-06/natural-resources-policy.pdf

TAN-15 (2025) reflects the core principles of the National Strategy for Flood and Coastal Erosion Risk Management in Wales³ to adopt a risk-based approach in respect of new development in areas at risk of flooding and coastal erosion. TAN-15 comprises technical guidance related to development planning and flood risk and provides a framework within which the flood risks arising from rivers, the sea and surface water, and the risk of coastal erosion can be assessed.

Its initial requirement is to identify the flood zones and vulnerability classification relevant to the proposed development, based on an assessment of current and future conditions. An indicative sequence to negotiating the various elements of TAN-15 is provided below in Figure 3-2.

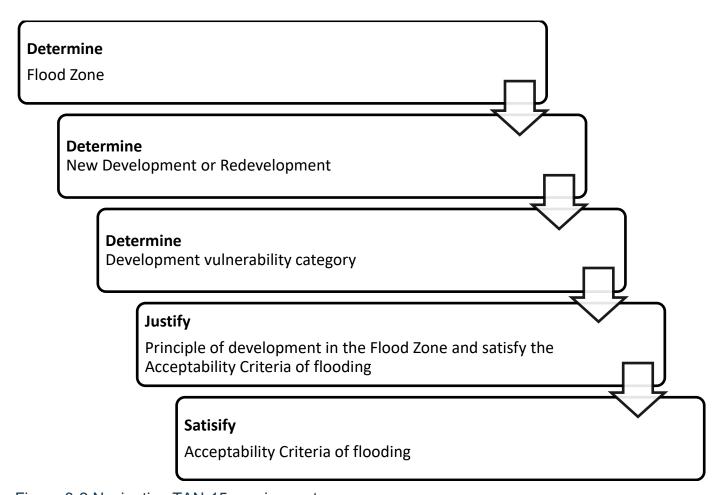


Figure 3-2 Navigating TAN-15 requirements

³ National Strategy for Flood and Coastal Erosion Risk Management in Wales. Welsh Government (October 2020) https://gov.wales/national-strategy-flood-and-coastal-erosion-risk-management-wales

3.3.1 Flood Map for Planning

TAN-15 defines a number of flood zones based on the likelihood of flooding. Table 3-2 summarises the definition of the flood zones in the Flood Map for Planning (FMfP)⁴, which was introduced by the Welsh Government in March 2025 as part of the updated TAN-15 guidance. The FMfP serves as the primary tool for assessing flood risk in land use planning. The FMfP provides more detailed and climate-responsive mapping, incorporating central climate change estimates over a 100-year development lifetime. The FMfP flood extents are based on these central estimates and include flood risk from rivers, the sea, surface water, and small watercourses. The March 2025 release of the FMfP has been used to inform this SFCA.

Table 3-2 TAN-15 definition of FMfP flood zones⁵

Zone	Flooding from rivers	Flooding from the sea	Flooding from surface water and small watercourses
1	Less than 1 in 1000 (0.1%) (plus climate change) chance of flooding in a given year	Less than 1 in 1000 (0.1%) (plus climate change) chance of flooding in a given year	Less than 1 in 1000 (0.1%) (plus climate change) chance of flooding in a given year
2	Less than 1 in 100 (1%) but greater than 1 in 1000 (0.1%) chance of flooding in a given year, including climate change	Less than 1 in 200 (0.5%) but greater than 1 in 1000 (0.1%) chance of flooding in a given year, including climate change	Less than 1 in 100 (1%) but greater than 1 in 1000 (0.1%) chance of flooding in a given year, including climate change
3	A greater than 1 in 100 (1%) chance of flooding in a given year, including climate change	A greater than 1 in 200 (0.5%) chance of flooding in a given year, including climate change	A greater than 1 in 100 (1%) chance of flooding in a given year, including climate change
TAN-15 Defended zone	Areas where flood risk management infrastructure provides a minimum standard of protection against flooding from rivers of 1:100 (plus climate change and freeboard)	Areas where flood risk management infrastructure provides a minimum standard of protection against flooding from the sea of 1:200 (plus climate change and freeboard)	Not applicable

⁴ https://flood-map-for-planning.naturalresources.wales

⁵ Source: Figure 2, TAN-15

Additionally, NRW has published a 'Recorded Flood Extents' layer, which identifies areas that have been recorded as having flooded in the past. These records are from a number of evidence sources including NRW, its predecessors or other Risk Management Authorities. The datasets include flooding records from rivers, the sea, surface water and small watercourses.

3.3.1.1 Flood Map Challenge

The FMfP is routinely updated by NRW with best available information on flood risks from the sea and rivers. These updates are published every six months. While many updates are undertaken by NRW's modelling and mapping teams, there is an established process for other parties to submit their own flood risk modelling data where it provides a more accurate assessment of flood risk. This is referred to as the Flood Map Challenge (FMC) process.

NRW publish through their website comprehensive guidance on the FMC process⁶. This guidance includes detailed specifications for the FMfP Zones, hydraulic modelling standards and supporting documentation requirements. Nevertheless, it is advised that NRW are consulted before embarking on an FMC and it is likely that expert technical advice will be required to undertake most FMCs.

Currently, there is no guidance on the process for challenging the flood map for small watercourses and surface water.

Where an FMC has been accepted by NRW, but not yet published online, NRW will respond to statutory planning consultations advising the LPA on the risks and consequences of flooding based on the best available information which would be the modelling from the FMC. This would include confirming what flood zone the site will be shown in from the next update. In line with Section 4.10 of TAN-15, once an FMC is accepted by NRW this will become a material consideration for decision makers, effective from when NRW accept it. As such the LPA will give material weight to accepted FMCs when applying the requirements of TAN-15.

3.3.2 Climate Change

Welsh Government publishes climate change guidance⁷ for Flood Consequences Assessments. The latest guidance was last published in September 2021 to provide updated sea level allowances. Assessing the future effects of climate change is a key aspect of TAN-15 and any FCA required to support a planning application.

There are three sources of flooding that utilise different climate change allowances; these are:

River flooding – Wales is divided into three river basin districts and peak river flow allowances are provided for each area. Recommendations are to use the central estimate

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

⁶ https://naturalresources.wales/flooding/challenging-our-flood-maps/?lang=en

⁷ Flood Consequences Assessments: Climate change allowances. Welsh Government (Sept 2021)

https://gov.wales/sites/default/files/publications/2021-09/climate-change-allowances-and-flood-consequence-assessments 0.pdf

(50th percentile) for the relevant river basin district. However, it is also advised that an assessment of risk should be undertaken using the upper end estimate (90th percentile). For the central estimate peak river flows in Wales are predicted to increase by 20-30% over the next 100 years.

Flooding from the sea – Estimated sea level rise is provided for each Authority area or can be calculated for specific sites through the UKCP18 User Interface. As a minimum, development proposals should be assessed against the higher central allowance (70th percentile) estimates to inform design levels. An assessment should also be made against the upper end allowance (95th percentile) to inform mitigation measures, access and egress routes and emergency evacuation plans. For the higher central estimate, sea levels along the Welsh coastline are predicted to increase by 0.91-1.01m over the next 100 years.

Surface water and small watercourses flooding – Peak rainfall intensity allowances are provided for catchments less than 5km². Recommendations are to use the central estimate as a minimum, and where there is significant flood risk, the upper end estimate should also be used. The central estimate for increasing peak rainfall intensity is 20% over the next 100 years, and 40% for the upper estimate. The LLFA should be consulted where surface water and small watercourse flood risks are considered significant.

3.3.3 Lifetime of development

The climate change uplifts detailed above are provided for different epochs. Consequently, the anticipated lifetime of development can be critical in the assessment of climate change impacts and future flood risk. This is most relevant to flooding from the sea, where sea level increases are estimated on an annual basis with increases accelerating over time. With river and surface water flood risk most climate changes effects are predicted to occur in the next 50 years, without further increases thereafter. Climate change uplifts are based on current Welsh Government guidance at the time of writing this report and may be subject to change.

TAN-15 states that "Generally, it is appropriate to think of new dwellings as having a lifetime of 100 years. Lifetimes for other types of development will vary, but 75 years is considered a reasonable rule of thumb. Planning authorities should apply this principle in a precautionary manner in relation to all types of development. The Flood Map for Planning contains 100-year climate change scenarios. Where new developments will have shorter lifetimes, it is reasonable that the Flood Consequences Assessment focusses on potential risks during the development's expected lifetime."

Across the Monmouthshire local planning authority area, it is considered that 75 years is an appropriate rule of thumb for most development types (with the exception of residential), in line with the guidance contained within TAN-15. Any proposals for a shorter Lifetime of Development shall be considered on a case by case basis.

3.3.4 Form of Development

TAN-15 recognises two key forms of development: New Development and Redevelopment. The definition of both terms is provided in Table 3-3.

Table 3-3 Form of Development

Form of Development	Definition
New Development	Any development on greenfield land
Redevelopment	Any development on previously developed land, as defined in Planning Policy Wales

3.3.5 Vulnerability classification

TAN-15 assigns one of three flood risk vulnerability classifications to a development, as shown in below in Table 3-4.

Table 3-4 TAN-15 Vulnerability Classification

	able 3-4 TAIN-13 Vullierability Classification		
Development category			
Highly vulnerable development	All residential premises (including hotels, Gypsy and Traveller sites, caravan parks and camping sites). Schools and childcare establishments, colleges and universities. Hospitals and GP surgeries. Especially vulnerable industrial development (e.g. power generating and distribution elements of power stations, transformers, chemical plants, incinerators), and waste disposal sites.		
	Emergency services, including ambulance stations, fire stations, police stations, command centres, and emergency depots. Buildings used to provide emergency shelter in time of flood.		
Less vulnerable development	General industrial, employment, commercial and retail development. Transport and utilities infrastructure. Car parks. Mineral extraction sites and associated processing facilities (excluding waste disposal sites). Public buildings including libraries, community centres and leisure centres (excluding those identified as in Highly Vulnerable category and emergency shelters). Places of worship. Cemeteries. Equipped play areas. Renewable energy generation facilities (excluding hydro generation).		

Development category	
Water Compatible Development	Boatyards, marinas and essential works required at mooring basins. Development associated with canals. Flood defences and management infrastructure. Open spaces (excluding equipped play areas). Hydro renewable energy generation.

3.3.6 Flooding and the plan-led system

Section 10 of TAN-15 provides a framework which outlines the principles of development in accordance with the flood zone within which that development is proposed. Considerations are provided separately within the policy document for both the Replacement LDP and for site specific applications. The requirements for each flood zone vary, and a differentiation in requirements is made depending on whether proposals are classified as 'New Development' or 'Redevelopment'.

It is understood that the requirements of Section 10 apply to the Flood Zones for river and sea only.

Monmouthshire County Council considers that the requirements of Section 10 provide a useful framework for all sources of flood risk. However, recognising the greater inherent uncertainty of other sources of flood risk, the requirements of Section 10 will be applied with great flexibility for other sources of flood risk, including surface water and small watercourses flooding. In such cases, proposals shall be considered on a case-by-case basis based on proportionate assessment, mitigation and justification.

3.3.7 Acceptability of flood consequences

If the planning authority is satisfied that a development proposed in a flood risk zone is acceptable, the justification will be in the knowledge that those developments may experience flooding and will need to be planned accordingly. A full understanding of the potential risks and consequences will be required to inform the planning authority in its decision. Before the planning authority determines an application, a Flood Consequences Assessment must be undertaken, which is appropriate to the nature and scale of the proposed development. The assessment must provide the decision maker with sufficient information to consider flooding implications and to balance them against other considerations (further details of which are provided in Section 9 of this report).

Whether a development should proceed or not will depend upon whether the consequences of flooding can be safely managed, including its effects on flood risk elsewhere.

There are requirements that must be in place for any development that is permitted to be located in flood risk areas. In all circumstances, developers and planning authorities should ensure the following conditions are met:

- No increase in flooding elsewhere
- Occupiers are aware of flood risk
- Escape/evacuation routes are present
- Flood emergency plans and procedures are agreed and in place
- Flood resistant and resilient design
- Acceptable consequences for type of development proposed (see detailed quidance below)

To inform its planning decision, the planning authority will need to arrive at a judgement on the acceptability of the flooding consequences and will only permit development where the developer has demonstrated that the risks and consequences of flooding are manageable. For areas at risk of **sea and river** flooding, the criteria, as set out below, should be met. The thresholds may be applied with more flexibility for redevelopment, changes of use, conversions and extensions, where the ability to substantially redesign a development is limited.

Frequency thresholds: designing development to be flood free. The frequency at which flooding is regarded to be acceptable. TAN-15 states that all developments must be designed to be flood free during the 1% river flood and 0.5% flooding from the sea events, with an allowance for climate change over the lifetime of development. See Table 3-5 for frequency thresholds.

Tolerable conditions: managing consequences in an extreme flood event. The flood conditions that are regarded to be acceptable during an extreme flood event with allowance for climate change. See Table 3-6.

Table 3-5 Flood frequency requirements⁸

Vulnerability categories	Vulnerability categories	Flood event types - Rivers	Flood event types - Sea
Highly vulnerable development	Emergency services (command centres and hubs)	0.1% +CC (1 in 1,000)	0.1% +CC (1 in 1,000)
Highly vulnerable development	All other types	1% +CC (1 in 100)	0.5% +CC (1 in 200)
Less vulnerable development		1% +CC (1 in 100)	0.5% +CC (1 in 200)

_

⁸ Source: Figure 5, TAN-15

Vulnerability categories	Vulnerability categories	Flood event types - Rivers	Flood event types - Sea
Water compatible development that may be occupied by people		1% +CC (1 in 100)	0.5% +CC (1 in 200)

Table 3-6 Tolerable conditions in an extreme flood event9

Type of development	Maximum depth of flooding (mm)	Maximum velocity of flood waters (m/s)
Highly vulnerable development	600	0.15
Less vulnerable development	600	0.3
Infrastructure associated with highly vulnerable development e.g. car parks, access, paths and roads	600	0.3
Water compatible development (limited to those built elements of development that may be occupied by people)	600	0.3

Note: The extreme flood event is defined as the 0.1% AEP flood event

The above figures are tolerances below which new development may be acceptable. Each site, however, must be considered individually, and a judgement taken in the context of the circumstances which could prevail at that site. Emergency services developments are not shown because they must be flood-free in a 0.1% event, as set out in Figure 3-5. For emergency services developments other than command centres or hubs, the conditions for highly vulnerable development should be applied.

3.3.8 Surface water and ordinary watercourse flood risk

Flooding is not confined to floodplains, as heavy rain falling on waterlogged ground or impermeable surfaces can cause localised flooding almost anywhere. Heavy rain can also result in drainage systems and ordinary watercourses, such as streams, reens and brooks quickly becoming inundated, leading to localised flooding. As the climate changes, this type of flooding will become more commonplace and more severe.

_

⁹ Source: Figure 7, TAN-15

The FMfP includes two surface water and small watercourse flood risk zones. Zone 3 contains areas at highest risk, with Zone 2 areas facing a lower risk. Areas considered at minimal risk of flooding from these sources are in Zone 1.

Surface water and ordinary watercourse flood risk management are the responsibility of Lead Local Flood Authorities (LLFAs). The LLFA has an important role in advising on surface water and ordinary watercourse flood risks for its area. The LLFA is a non-statutory consultee to all planning applications and will pay particular attention to applications affected by surface water and ordinary watercourse flood risk. Applicants are advised to seek the LLFA's input at pre-application stage. This is advised whether the flood risk is potentially a reason for refusal, or not, and where the risk is proposed to be managed or mitigated.

Flood Consequences Assessments are required for any development proposal located fully or partly in Surface Water and Small Watercourses - Flood Zones 2 and 3. Local Authorities may exercise some discretion for householder applications where the risk may be lower due to the nature of the development being proposed and the requirements should be proportionate to the development proposal. An assessment should also be undertaken for development on sites outside of these zones, but which have the potential to affect the course of surface water and/or excess water from ordinary watercourses. Planning authorities may provide specific local advice on this issue in Development Plans.

The flood frequency and tolerable limits of TAN-15 Section 10, and Figures 5 and 6 in TAN-15, apply only to river and sea flooding. However, these requirements are likely to form the basis of the LLFA's assessment of flood risk acceptability. This is particularly true of small watercourse flooding as it is often indistinguishable from river flooding. Further information and guidance on Flood Consequences Assessment is provided in Section 8.3.

3.4 Regional Policy

3.4.1 Flood Risk Management Plans

The Flood Risk Management Plan (FRMP) 2023-2029 is produced by NRW as part of a national strategy to manage flood risks from rivers, the sea, and reservoirs (not surface water or small watercourses). The FRMP is split into two sections, in the first section, information is provided on the priorities and measures set at the National (Wales) level. The second section is split according to NRW Operational areas, also known as NRW Places. The South East Wales Place section covers the study area and provides information about the level of risk at a local scale and describes what is planned for the communities of most concern.

The South East Wales Flood Risk Management Plan is an essential component of future flood risk management. The plans are also key to delivering the flood risk management outcomes of Welsh Government and Defra.

3.4.2 River Basin Management Plans

The Severn River Basin Management Plan 2021-2027 covers the study area.

The focus of this plan is to provide a framework for protecting and enhancing the benefits provided by the water environment; which in turn informs decisions on land use planning. The plan contains four sets of key information:

- establish the baseline conditions of waterbodies;
- highlight areas of land and bodies of water that have specific uses that need special protection;
- sets out statutory objectives for waterbodies; and
- summary programme of measures to achieve statutory objectives.

3.5 Local Policy

The following documents have been published across the study area:

- Local Development Plan-2011-2021¹⁰
- Strategic Flood Consequences Assessments (2022)¹¹
- Preliminary Flood Risk Assessment 2011 and 2017 (Addendum only)¹²
- Local Flood Risk Management Strategy 2013¹³
- Flood Risk Management Plan 2016¹⁴

It is understood that Monmouthshire County Council are in the process of updating their Local Flood Risk Management Strategy (LFRMS), which is anticipated to be published early 2026. The revised LFRMS will include a Flood Action Plan which intends to supersede the existing Flood Risk Management Plan. Both the LFRMS and the Flood Action Plan were open for public consultation from August - September 2025¹⁵. For further information on the proposed LFRMS contact the LLFA.

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

¹⁰ https://www.monmouthshire.gov.uk/planning-policy/monmouthshire-local-development-plan/

¹¹ https://www.monmouthshire.gov.uk/app/uploads/2024/10/Strategic-Flood-Consequences-Assessment-SFCA-Stage-1-Report.pdf

¹² https://www.monmouthshire.gov.uk/app/uploads/2018/02/Preliminary-Flood-Risk-Assessment-Addendum-2017.pdf

¹³ Current Local Flood Risk Management Strategy- https://www.monmouthshire.gov.uk/app/uploads/2018/02/Local-Flood-Risk-Management-Strategy-2013.pdf

¹⁴ Current Flood Risk Management Plan-https://www.monmouthshire.gov.uk/app/uploads/2018/02/Flood-Risk-Management-Plan-2016.pdf

¹⁵ Consultation documents for LFRMs and Flood Action Plan: https://www.letstalkmonmouthshire.co.uk/flood-risk-2025

4 Understanding of flood risk

4.1 Likelihood and Consequence

Flood risk is a combination of the likelihood of flooding and the potential consequences. It is assessed using the source – pathway – receptor model, as shown in Figure 4-1. This is a standard environmental risk model common to many hazards and should be the starting point of any Flood Consequences Assessment. However, it should be noted that flooding could occur from many different sources and pathways, and not simply those shown in the illustration below.

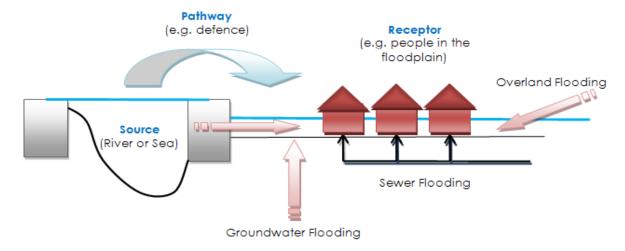


Figure 4-1 Source - Pathway - Receptor model

The principal sources are rainfall or higher than normal sea levels. The most common pathways are rivers, drains, sewers, overland flow, and river and coastal floodplains and their defence assets. The receptors can include people, their property, and the environment. All three elements must be present for flood risk to arise. Mitigation measures have little or no effect on sources of flooding, but they can block or impede pathways or remove receptors.

The planning process is primarily concerned with the location of receptors, taking appropriate account of potential sources and pathways that might put those receptors at risk. It is therefore important to define the components of flood risk in order to apply this guidance in a consistent manner.

4.1.1 Likelihood

Likelihood of flooding is expressed as the percentage probability based on the average frequency measured or extrapolated from records over a large number of years. A 1% probability indicates the flood level that is expected to be reached on average once in one-hundred years, i.e. it has a 1% chance of occurring in any one year, not that it will occur once every one-hundred years. Low probability events can occur on subsequent days and in quick succession, for example with storms Ciara, Dennis, and Jorge in 2020. This can

also lead to antecedent conditions (such as saturated soils) that can exacerbate the impacts of flooding.

4.1.2 Consequence

The consequences of flooding can result in fatalities, damage to property, disruption to lives and businesses, with severe implications for people (e.g. financial loss, emotional distress, health problems). Consequences of flooding depend on the hazards caused by flooding (depth of water, speed of flow, rate of onset, duration, wave-action effects, water quality) and the vulnerability of receptors (type of development, nature, e.g. age-structure, of the population, presence and reliability of mitigation measures, etc).

4.1.3 Risk

Flood risk is expressed in terms of the following relationship:

Flood risk = Probability of flooding x Consequences of flooding

Flood risk is not static; it cannot be described simply as a fixed water level that will occur if a river overtops its banks or from a high spring tide that coincides with a storm surge. It is therefore important to consider the continuum of risk carefully. Risk varies depending on the severity of the event, the source of the water, the pathways of flooding (such as the condition of the flood defences) and the vulnerability of receptors.

4.1.4 Actual Risk

This is the risk 'as is', taking into account any flood defences that are in place for extreme flood events (typically these provide a minimum Standard of Protection (SoP)). Hence, if a settlement lies behind a fluvial flood defence that provides a 1 in 100-year SoP then the actual risk of flooding from the river in a 1 in 100-year event is generally low.

Actual risk describes the primary, or prime, risk from a known and understood source managed to a known SoP. However, it is important to recognise that risk comes from many different sources and that the SoP provided will vary within a river catchment. Hence, the actual risk of flooding from the river may be low to a settlement behind the defence but moderate from surface water, which may pond behind the defence in low spots and is unable to discharge into the river during high water levels.

4.1.5 Residual Risk

The existence of robust flood defences does not mean development should be allowed without further consideration of flood risks. Flood defences reduce the risk of flooding but do not eliminate it. The consequences of flooding can be particularly severe in the event of defences being overtopped or breached, resulting in rapid and hazardous flooding. Furthermore, hydraulic structures such as bridge and culverts can block, and pumps, sluices and flaps can fail to operate.

Although not a term used in TAN-15, amongst flood risk professionals the term 'residual risk' is often used to describe the risks associated with asset or system failure.

Whilst the actual risk of flooding to a settlement that lies behind a fluvial flood defence that provides a 1 in 100-year SoP may be low, there will be a residual risk from flooding if these defences overtopped or fail that must be taken into account.

Where appropriate, a Flood Consequences Assessment should demonstrate that in the event of overtopping, breach or blockage the consequences of flooding can be managed to an acceptable level. This will be needed for sites that benefit from the type of defences that can be breached or blocked, including flood embankments, sea walls and culverts. NRW and/or the LLFA should be consulted at an early stage to discuss the requirement for residual risk assessment, technical assumptions and the application to the acceptability criteria. It is also advisable to check the websites of NRW and the LLFA for up-to-date guidance and standing advice.

4.2 Sources of Flooding

4.2.1 Flood Risk from Rivers

Flooding from rivers occurs when water levels rise higher than bank levels, causing flood water to spill across adjacent land (floodplain). The main reasons that water levels can rise in rivers are:

- Intense of prolonged rainfall causing runoff rates and flow to increase in rivers, exceeding the capacity of the channel. This can be exacerbated by wet antecedent conditions and elevated groundwater tables.
- Constrictions in the river channel causing flood water to backup.
- Blockage of structures or the river channel causing flood water to backup.
- High water levels and/or flow locked flood (tide) gates preventing discharge at the outlet of the river.

The consequence of river flooding depends on how hazardous the flood waters are and what the receptor of flooding is. The hazard of river flood water is related to the depth and velocity which depends on the:

- Magnitude of flood flows
- Size, shape, and slope of the river channel
- Types of structures that cross the channel

Flood hazard can vary greatly throughout catchments and even across floodplain areas. The most hazardous flows generally occur in steep catchments, and towards the bottom of large catchments. Hazardous river flows can pose a significant risk to exposed people, property, and infrastructure.

Whilst low hazard flows are of less of a risk to life, they can disrupt communities, require significant post-flood clean up, and can cause superficial and possibly structural damage to property.

4.2.2 Flood Risk from the Sea

Flooding from the sea occurs when water levels in the sea rise above ground levels of coastal land. This can occur during normal high tides, when there are extreme atmospheric effects, and when wind action causes water levels of the sea to rise. Sea flooding can be particularly severe, with rapid inundation, the possibility of multiple overtopping events and the increased damage caused by saltwater. These effects can be even more severe if a breach of sea defence occurs.

4.2.3 Surface Water Flood Risk

Surface water flooding occurs when intense, often short duration rainfall is unable to soak into the ground or enter drainage systems and can be exacerbated when soils are saturated. The excess water then ponds in low points, overflows or concentrates in minor drainage lines that are usually dry. This type of flooding is usually short lived and associated with heavy downpours of rain. Often there is limited warning before this type of localised flooding occurs.

Drainage basins or catchments vary in size and shape, which has a direct effect on the amount of surface runoff. The amount of runoff is also a function of geology, slope, climate, rainfall, saturation, soil type, and vegetation. Geological considerations include rock and soil types and characteristics, as well as degree of weathering. Porous material (sand, gravel, and soluble rock) absorbs water more readily than fine-grained, dense clay or unfractured rock and has a lower runoff potential. Poorly drained material has a higher runoff potential and is more likely to cause flooding.

Water flowing over the ground surface that has not entered a natural channel or artificial drainage system is classified as surface water runoff or overland flow.

Flooding from land can occur in rural and urban areas but usually causes more damage in the latter. Urban areas can be inundated by flow from adjacent farmlands. Flood pathways include the land and water features over which flood water flows. These pathways include minor drainage lines, roads, and even flood management infrastructure.

Developments that include significant impermeable surfaces, such as roads and car parks may increase the occurrence of surface water runoff.

Surface water flooding can affect all forms of the built environment, including property, infrastructure, agriculture, and the natural environment. It is usually short lived and will tend to last as long as the rainfall event. However, flooding may persist in low-lying areas where ponding occurs.

Flooding may occur as sheet flow or as rills and gullies causing increased erosion of agricultural land. This can result in 'muddy floods' where soil and other material are washed onto roads and properties, requiring extensive clean-up. Both rural and urban land use changes are likely to alter the amount of surface water in the future. Future development is also likely to change the position and numbers of people and/or developments exposed to flooding.

4.2.4 Groundwater Flooding

Groundwater flooding is caused by the emergence of water originating from sub-surface permeable strata. Groundwater flooding can happen at point or diffuse locations, and it tends to be long in duration, developing over weeks or months and prevailing for days or weeks.

High groundwater levels can result from the combination of geological, hydrogeological, topographic, and recharge phenomena. Of the groundwater flooding mechanisms experienced in the SFCA area, rising groundwater levels in major aquifers as a result of long duration rainfall present the greatest and most extensive level of risk. The most common causes of groundwater flooding are:

- Rising groundwater levels in response to prolonged extreme rainfall
- Rising groundwater levels due to leaking sewers, drains, and water supply mains
- Increased groundwater levels due to artificial obstructions
- Groundwater rebound owing to rising water table and failed or ceased pumping
- Upward leakage of groundwater driven by artisan head
- Inundation of trenches intercepting high groundwater levels
- Other: alluvial aquifers, sea level rise, etc

The main impacts of groundwater flooding are:

- Flooding of basements of buildings below ground level in the mildest case this may involve seepage of small volumes through walls, temporary loss of services, etc. In more extreme cases larger volumes may lead to the catastrophic loss of stored items and failure of structural integrity.
- Overflowing of sewers and drains and surcharging of drainage networks leading to overland flows causing significant but localised damage to property.
- Flooding of buried services or other assets below ground level, or prolonged inundation of buried services, leading to interruption and disruption of supply.

4.2.5 Sewer Flooding

Flooding from sewers occurs when rainfall exceeds the capacity of networks or when there is infrastructure failure. This includes combined and surface water sewers, sewer pumping stations and water treatment facilities.

The main causes of sewer flooding are:

- Lack of capacity in sewer drainage networks due to original under-design or an increase in demand (for example, due to climate change or new developments)
- Lack of capacity in sewer drainage network due to events larger than the system design event
- Lack of maintenance of sewer networks which lead to a reduction in capacity and can sometime lead to sewer blockage
- Water mains bursting/leaking due to a lack of maintenance or as a result of damage

- Groundwater infiltration into poorly maintained or damaged pipe networks
- Restricted outflow from the sewer systems due to high water levels in receiving watercourses or the sea

The impact of sewer flooding is usually confined to relatively small, localised areas. However, flooding associated with blockage or failure of the sewer network can be rapid and unpredictable.

Drainage systems often rely on gravity assisted dendritic systems which convey water in trunk sewers located at the lower end of the catchment. Failure of these trunk sewers can have serious consequences as water from surcharged manholes will flow into low-lying land that may already be suffering from other sources of flooding.

Consequences for affected properties and individuals can be particularly severe for those affected by sewer flooding. Sewer flooding is likely to have a high concentration of solid, soluble and insoluble contaminants. These contaminants can have serious health impacts on residents of flooded properties and are typically significantly more destructive to personal possessions. Flooding of sewers can also lead to contaminated water entering nearby watercourses, having an adverse effect on the biota in receiving environments.

4.2.6 Flooding from Artificial Sources

For the purpose of the SFCA, flooding from artificial sources have been defined as flooding from non-natural or artificial sources of flooding such as reservoirs, canals, and lakes where water is retained above natural ground level.

The spatial and temporal extent of flooding from artificial sources can be highly variable. For example, the likelihood of a new reservoir failing is very small compared to that of a canal embankment that is over one hundred years old. However, whilst the probability is low, the consequences of a reservoir failing could be catastrophic.

Reservoirs are artificially created ponds or lakes that are formed by building a dam across a watercourse. If a dam fails, then water can escape from the reservoir resulting in land or properties being flooded. In order to ensure that reservoirs are properly maintained and to minimise the possibility of reservoir failure, large reservoirs in Wales (those storing more than 10,000 cubic metres of water) are regulated under the Reservoirs Act 1975, where amended by the Flood and Water Management Act 2010. This legislation, which is enforced by Natural Resources Wales, requires reservoirs to be routinely inspected and maintained to an appropriate standard.

Provided that a reservoir is properly maintained, the likelihood of it failing and causing flooding is extremely low. However, in the very unlikely event of a dam collapse, a large volume of water could be released, quickly flooding a large area and possibly causing significant property damage.

4.2.7 Impact of Climate Change

Climate change is causing more frequent and more severe flooding to occur in Wales. The Climate Change Committee provides independent advice to the Welsh Government on

setting and meeting carbon budgets and preparing for climate change. It has stated that it expects the climate in Wales to become warmer and wetter, with significant increases in the sea level around the coast and the frequency and intensity of storm events. This will increase the risk of flooding, and it is also reasonable to expect the incidence and seriousness of flood events to increase.

Table 4-1 below shows how Climate Change has been assessed for each source of flooding within the SFCA. Even if an area is not currently at flood risk, the impact of climate change on the extent of flooding should be considered.

Table 4-1 Assessment of Climate Change for all sources of flooding

		_
Source	Data Source	Climate Change Allowance
Rivers	NRW FMfP for Rivers, detailed flood models and the National Flood Hazard Mapping	The FMfP displays predicted future flood risk under the central climate change estimate. Detailed FCAs will be required to consider a range of climate change scenarios, including upper end estimates, making reference to the Welsh Government guidance on climate change allowances for planning purposes.
Sea	NRW FMfP for the Sea, and the National Flood Hazard Mapping	The FMfP displays predicted future flood risk under the higher central climate change estimate. Detailed FCAs will be required to consider a range of climate change scenarios, including upper end estimates, making reference to the Welsh Government guidance on climate change allowances for planning purposes.
Surface Water and Small Watercourses	NRW FMfP for Surface Water and Small Watercourses and the National Flood Hazard Mapping	The FMfP displays predicted future flood risk under the central climate change estimate. Detailed FCAs will be required to consider a range of climate change scenarios, including upper end estimates, making reference to the Welsh Government guidance on climate change allowances for planning purposes.

Source	Data Source	Climate Change Allowance
Groundwater	No data sets available.	The impacts of climate change on groundwater flooding problems, and those watercourses where groundwater has a large influence on winter flood flows, is much more uncertain. Milder wetter winters may increase the frequency of groundwater flooding incidents in areas that are already susceptible, but warmer drier summers may counteract this effect by drawing down groundwater levels to a greater extent during the summer months. The effect of climate change on groundwater levels for sites in areas where groundwater is known to be an issue should be considered at the planning application stage.
Sewers	No data sets available.	Climate change is likely to result in an increase in sewer flooding incidences as a result of its interaction with other flood risk sources (including surface water and groundwater) where flooding from this source is increased as a result of climate change. Where sewer flooding is known to be an issue should be considered at the planning application stage.
Reservoirs	No data sets available.	Some reservoir functions (i.e. the use that the reservoir is put to) may be relatively vulnerable to climate change, particularly where they rely on existing yields, flood flows or water quality of source waters. However, there are a number of systems that are already in place (e.g. the Water Resources Management Plan) that contain methods for identifying impacts and adapting to climate change as part of the normal ownership and operation process. In most cases, the form of the dam is resilient to the effects of climate change if the reservoir structure is well engineered with an appropriate factor of safety.

4.3 Roles and responsibilities for managing flood risk

Flood and Coastal Erosion Risk Management in Wales involves a number of organisations. The roles and responsibilities of these organisations are outlined in The National Strategy for Flood and Coastal Erosion Risk Management in Wales¹⁶. There are 28 Risk Management Authorities (RMAs). These RMAs are:

- NRW (Including Internal Drainage District [IDD])
- The 22 Local Authorities as Lead Local Flood Authorities (LLFA) and Highway Authorities
- Two water companies
- The Welsh Government (as highway authority for trunk roads)

The basic responsibilities of key stakeholders in Wales are set out below in Figure 4-2, taken from the National Strategy.

Welsh Government: Set direction and objectives, and prioritise funding

NRW Oversight: General supervision and communication of flood & coastal erosion risk management in Wales

Risk Management Authorities: Identify and manage risks

NRW

Manage flooding from main rivers, their reservoirs and the sea. Coastal protection works as a coastal erosion RMA.

Local Authority, as **Lead Local Flood Authority** Manage flooding from ordinary watercourses, surface water and groundwater. Coastal protection works as coastal erosion RMA. Highway drainage as highway authority.

Welsh Government

as trunk road highway authority manage highway drainage

Water Companies

Manage flooding from water and sewage systems

Landowners, Partners and Stakeholders

No duties but have a role to play as riparian landowners or asset owners. May also be those who best understand the local management of land and water and/or the flood risk facing their community.

Figure 4-2 Overview of Roles and Responsibilities (taken from the National Strategy for Flood and Coastal Erosion Risk Management)

RMAs all have a duty to help deliver the objectives of the National Strategy as well as powers and responsibilities in terms of the risks they manage. There are also places where these roles and responsibilities interact or are shared. The specific roles and responsibilities for each organisation are outlined in the National Strategy.

¹⁶ Welsh Government (2020) The National Strategy for Flood and Coastal Erosion Risk Management in Wales. Taken from: https://gov.wales/sites/default/files/publications/2021-03/the-national-strategy-for-flood-and-coastal-erosion-risk-management-in-wales.pdf

The 'Gwent Internal Drainage District' (under the governance of NRW) operates within the Monmouthshire LPA area, as shown in Figure 4-3. The IDD manages water levels for ordinary watercourses, drainage channels, pumping stations and control structures across the Gwent Levels and areas of the Lower Wye. The IDD operates in accordance with the Land Drainage Act (1991).

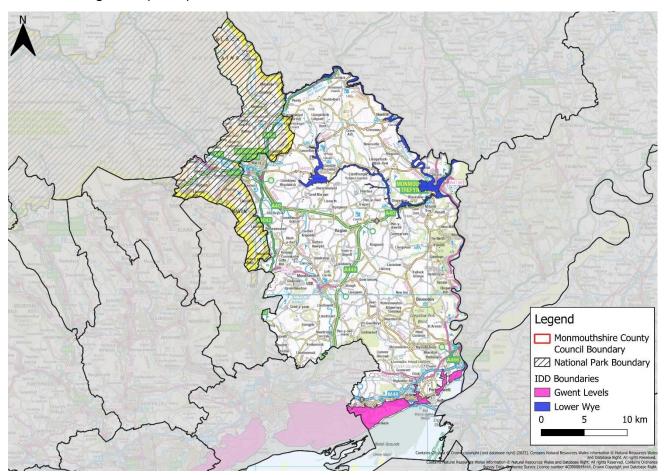


Figure 4-3 Gwent IDD in Monmouthshire

4.4 Sources of information used in preparing the Strategic Flood Consequences Assessment

4.4.1 Historical flooding

The historical flood risk across the study area has been assessed using information of recorded incidents provided by the stakeholders of the SFCA, including flood reports from the LLFA and DCWW, and NRW's 'Recorded Flood Extents' dataset. This has been supplemented with other information from the existing SFCAs, PFRAs, LFRMPs and Flood Investigation reports which have either been provided by stakeholders or are publicly available. Flood Records within this SFCA from DCWW have been brought forward from the 2021 regional SFCA. Whilst a data request has been sent to DCWW, no response has been received to update this report.

4.4.2 Natural Resources Wales – Flood Map for Planning

The NRW FMfP Flood Zones (issued March 2025) have been consulted for this SFCA and are described in Section 3.3.1. The FMfP Flood Zones 2 and 3 show the potential extent of flooding, assuming no defences are in place. The TAN-15 Defended Zones show areas that benefit from RMA flood defences with a minimum standard of protection of 1 in 100 years (present day) for rivers, and 1 in 200 year (present day) for the sea.

4.4.3 Flood Defences

The NRW FMfP Flood Defences GIS dataset has been consulted for this SFCA. The data set identifies flood defences that have been built to mitigate against flooding from rivers and the sea. The defences dataset provides information on standard of protection and condition of the asset. Engineered defences usually have a standard of protection, which is the return period of a flood event against which the defence should be effective.

The National Flood Asset Database

The National Flood Asset Database (NFAD)¹⁷ records flood infrastructure in Wales, including embankments, walls, flood gates, culverts, and debris screens. All RMA's in Wales are encouraged to enter onto the NFAD details of all assets that they are aware of, including privately owned assets. The NFAD is regularly updated to improve the accuracy of the data. However, at the moment NRW highlight the following issues with the database:

- · some of the data may be inaccurate, out-of-date or missing
- some of the underground assets might not be known or recorded accurately
- Property Flood Resilience (PFR) schemes are not included

4.4.4 Groundwater

JBA has developed a range of Groundwater Flood Map products at the national scale. The 5m resolution JBA Groundwater Map has been used within the SFCA. The modelling involves simulating groundwater levels for a range of return periods (including 75, 100, and 200-years). Groundwater levels are then compared to ground surface levels to determine the head difference in meters. The JBA Groundwater Map categorises the head difference (m) into five feature classes based on the 100-year model outputs. These are outlined in Table 4-2.

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

¹⁷ https://naturalresources.wales/flooding/managing-flood-risk/find-flood-defence-structures-near-you-the-national-flood-asset-database/?lang=en

Table 4-2 JBA Groundwater flood risk map categories

Flood depth range during a 1% AEP flood event	Groundwater flood risk
Groundwater levels are either at or very near (within 0.025m of) the ground surface.	Groundwater may emerge at significant rates and has the capacity to flow overland and/or pond within any topographic low spots.
Groundwater levels are between 0.025m and 0.5m below the ground surface.	There is the possibility of groundwater emerging at the surface locally.
Groundwater levels are between 0.5m and 5m below the ground surface.	Groundwater may emerge into subsurface assets but surface manifestation of groundwater is unlikely.
Groundwater levels are at least 5m below the ground surface.	Flooding from groundwater is not likely.

It is important to note that the modelled groundwater levels are not predictions of typical groundwater levels. Rather they are flood levels i.e. groundwater levels that might be expected after a winter recharge season with 1% AEP and so would represent an extreme scenario. The maps also assess the risk of groundwater emergence and not of resulting groundwater flooding. For groundwater flooding to occur it is often necessary for groundwater to have nowhere to go without ponding and flooding an area first.

It should be noted that as the JBA Groundwater Flood Map is based on national modelling it should only be used for general broad-scale assessment of the groundwater flood hazard in an area. It is not explicitly designed for the assessment of flood hazard at the scale of a single property. In high-risk areas a site-specific risk assessment for groundwater flooding is recommended to fully inform the likelihood of flooding. This may include review of historical flood records, historical borehole logs, consultation with the LLFA and groundwater monitoring.

4.4.5 Sewers

Historical records of sewer flooding have been taken from historical flooding records provided by DCWW and considered on a broad spatial scale.

4.4.6 Reservoirs

The risk of inundation due to a reservoir breach or failure of reservoirs within the areas has been assessed using the NRW's 'Flood Risk from Reservoirs dataset'. The shading on the map shows the worst-case scenario for the area that could be flooded if a large reservoir were to fail and release the water it holds.

Reservoir flooding is extremely unlikely to happen. There has been no loss of life in the UK from reservoir flooding since 1925. All large reservoirs must be inspected and supervised by reservoir panel engineers. As the enforcement authority for the Reservoirs Act 1975 in

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

Wales, NRW ensure that reservoirs are inspected regularly, and essential safety work is undertaken.

The reservoir flood maps do not indicate the likelihood of a flood occurring.

4.4.7 Working With Natural Processes

Nature based solutions should be considered as a way of managing flood risk where possible. More information and mapping to help identify potential areas for working with natural processes to reduce river flooding have been developed as part of the research project 'Working with Natural Processes – the evidence base'. More information can be found in the mapping appendices and Section 10. The Welsh Information for Nature-based solutions¹⁸ website offers more detailed information on Natural Flood Management and its suitability for areas within Wales.

4.4.8 Future flood defence

Welsh Government have advised local authorities that they should prepare a pipeline of likely works as part of the local flood risk management strategy, with recognition of how the climate projections will bring more areas into flood risk and increase the depth and velocities of flooding in the future.

The Welsh Government flood and coastal erosion risk programme invites applications which reduce risk to communities as set out in the National Strategy and associated guidance. The programme does not provide funding to enable new development in areas at risk of flooding. Furthermore, TAN-15 states that highly vulnerable developments reliant on new coastal defences must not commence prior to the completion of construction work and the new Defended Zones being in place.

It is, however, recognised that there is a need to develop resilience in town centres and for nationally significant infrastructure, where they face new or increased flood risks as a result of climate change. It is likely a multi-agency approach, with the support of the private sector where appropriate, will be required to deliver such outcomes, whilst remembering that new flood defences will have to satisfy the qualifying criteria for Defended Zones.

Policy 8 of Future Wales – the National Plan 2040 demonstrates the Welsh Government's support for the sustainable management of flood risk in national and regional growth areas. Enabling areas in Zones 2 or 3 (Rivers and Sea) to become Defended Zones through the use of new nature-based solutions or improvements to existing flood defences, or other solutions is supported. This will provide important protection to existing development and enable redevelopment and renewal to take place in a sustainable and responsible way.

The SFCA can play a valuable role in identifying existing investment FCERM plans, as well as identifying flood investment opportunities and priorities that might align with development aspirations.

_

¹⁸ https://storymaps.arcgis.com/collections/036c04ccb85948d2abe7312de75ad318?item=1

4.5 Current pipeline of Flood and Coastal Erosion Risk Management (FCERM) projects

Details of any significant FCERM plans within the region that are likely to be delivered in the next five years have been taken from NRW's list of Flood Defence Projects available online¹⁹ (and last updated November 2024) and the Welsh Government Flood and Coastal Erosion Risk Management Programme 2025-26²⁰. Details of the projects are summarised in Table 4-3. Any proposed development within these areas would be advised to contact NRW to obtain up to date information and for further advice on any pipeline schemes.

However, it should be noted that planning applications will only be assessed against defences currently in place, and aspirations to construct or improve defences will not be regarded as a material consideration. It should be noted that whilst this provides an indication of pipeline projects, this list is not exhaustive and is subject to frequent change. Details of FCERM investment plans are regularly published by Welsh Government, NRW and RMAs.

Identification of pipeline projects should be undertaken in consultation with NRW, WG and other RMAs.

Table 4-3 Current pipeline of NRW FCERM projects

Project name	Location	RMA	Timescales
Severn Estuary access road repairs	Monmouthshire	NRW	Construction in 2022-2023
Monmouth outfall repairs	Monmouthshire	NRW	Construction in 2022-2023
Magor Pill outfall repairs	Monmouthshire	NRW	Construction in 2022-2023
St Pierre outfall repair	Monmouthshire	NRW	Construction in 2022-2023
West Pill outfall improvement	Monmouthshire	NRW	Construction in 2022-2023

¹⁹ https://naturalresources.wales/flooding/managing-flood-risk/our-capital-investment-programme-for-rivers-and-the-coastline/?lang=en 20 https://www.gov.wales/flood-and-coastal-erosion-risk-management-programme-2025-2026-html

Project name	Location	RMA	Timescales
Skenfrith	Monmouthshire	NRW	Business Justification Case / Outline Business Case ongoing

FCERM Capital Investment

Monmouthshire County Council has a further programme of FCERM investment projects that are preferred for managing flood risk across the county. These schemes focus on surface water and ordinary watercourse flooding (not main river source) within the following communities. Table 4-4 provides an overview of proposed schemes which aim to alleviate flood risk to a number of properties. The list should not be considered exhaustive, and developers are advised to contact MCC LLFA for further information.

Table 4-4 MCC LLFA Pipeline FCERM Schemes

Project name	Location	RMA	Timescales
Woodside Flood Alleviation Scheme	Usk	LLFA	Currently at Detailed Design / Full Business Case

5 Flood Risk Review

Section 5.3 of TAN-15 states that SFCAs will provide planning authorities with information on current and future flood risk, using the best available information about climate change and projected changes to the nature of flood risk. The risk of flooding from all sources must be considered as part of an SFCA, including flooding from the sea, rivers, land, groundwater, sewers, artificial sources and coastal erosion. Using the datasets identified in Section 4, this section provides a strategic assessment of the flood risk across the study area from each source. For each source of flooding, where appropriate, the impact of climate change on the source of flooding is described. These should be used in combination with the broad scale and individual area mapping provided in Appendix A.

5.1 Historical flooding

Monmouthshire has a history of recorded flood events caused by multiple sources of flooding. Significant flood events within the Monmouthshire LPA area (which have been taken from NRW's recorded flood extents dataset and Monmouthshire County Council records and reports on historical flood incidents) are recorded below in Table 5-1. Every effort has been made to include the most significant flood events within the county; however, the list is not exhaustive. Developers are encouraged to consult the LLFA and NRW about historical flood risk to a proposed development site. A summary of the spatial distribution of historical sewer flooding incidents by electoral ward are shown in Table 5-2.

Information from Monmouthshire LLFA indicates that there are some recorded incidents of groundwater flooding across the county with some basement properties being impacted. In addition, there is a known history of groundwater flooding upstream of Caldicot Country Park, though no properties are affected. However, significant, widespread groundwater flooding impacting property is limited across the county and has therefore not been included in the table below. Should development proposals be located within an area of known high groundwater levels, the LLFA should be contacted for further information and advice.

Table 5-1 Flooding incidents by year

Year of Flood Event	Flood Incident
April 1947	NRW's historic flood dataset indicates flooding in Monmouth and villages upstream on the River Trothy and the River Monnow. The source of flooding is believed to be from these watercourses.
December 1979	NRW's historic flood dataset indicates flooding in Abergavenny, Usk and smaller settlements on the banks of the River Usk.
December 1981	The LFRMS details this event as the largest tidal event on record for the Wye and Usk estuaries. No further details are given on the extent of flooding or number of properties affected.
1993, 2001, 2002, 2003	The PFRA details that 16 properties were flooded on the A466 and Raglan Road areas during these time periods. The source of the flooding was from culverts upstream of these areas where the capacity was constrained.
October 2008	The PFRA highlights that heavy storms in 2008 caused flooding of 12 properties in the Buckholt area.
October 2019/February 2020	Flooding in Skenfrith where 18 properties were recorded to have experienced significant flooding. The source of the flooding was from overtopping of the Norton Brook and River Monnow. Significant flooding also occurred at Forge Road, Monmouth. S19 reports for both of these events can be found on the MCC website ²¹ .
February 2020	Flooding in Monmouth, Caldicot, Usk, Llanwenarth and Llanbadoc as a result of Storm Dennis and Storm Jorge. It is understood that approximately 200 properties are known to have suffered internal flooding across Monmouthshire during Storm Dennis. The source of the flooding was from the River Wye, River Usk, River Monnow and several smaller watercourses in the county. Section 19 reports were produced as a result of flooding in these events and are provided on the Monmouthshire County Council website ²¹ . Section 19 reports for Storm Dennis were prepared for the following areas:
	Caldicot S19 Report Feb 2020

²¹ https://www.monmouthshire.gov.uk/flood-investigation-reports/

Year of Flood Event	Flood Incident		
	Forge Road, Monmouth S19 Report Feb 2020		
	Llanbadoc, Usk S19 Report Feb 2020		
	Llanvihangel Gobion & Kemeys Commander S19 Report Feb 2020		
	Llanwenarth S19 Report Feb 2020		
	Mayhill, Monmouth S19 Report Feb 2020		
	Skenfrith S19 Report Feb 2020		
	Watery Lane, Rockfield Road, Monmouth S19 Report Feb 2020		
	Woodside, Usk S19 Report Feb 2020		
March 2020	Tidal flooding associated with the River Wye at Tintern. A Section 19 report was prepared by MCC for this event and is found on the council website ²¹		
	It should be noted that there is a known history of frequent flooding at Tintern associated with tidal flood risk.		
December 2021	Magor, Localised heavy rainfall caused the Mill Reen to break bank. 3 properties on Cowleaze, 1 on Dancing Hill, 2 on Main Road flooded internally.		
	Portskewitt, Localised surface water flooding impacting 1 property internally.		
May 2023	Usk- Localised surface water flooding around Burrium Gate development. 4 homes internally flooded		
November 2024	Storm Bert in November 2024 resulted in 75 homes and 22 businesses known to have flooded internally. Record levels were observed on sections of the River Monnow, River Trothy and Olway Brook. Many small ungauged watercourses reported to have reached levels not seen before in living memory by local residents.		
Unknown	The PFRA details that Blake Street, Wyesham and Monmouth were affected by flooding, the source of flooding was not indicated. Surface water flooding was also experienced in Kymin.		
Unknown	The PFRA (published in 2011 and subsequent addendum published 2017) contains additional information on flood extents across Monmouthshire. Flooding of a number of properties was identified due to blocked culverts, surface water flooding and watercourse overtopping. The dates of these incidents vary.		

5.2 Flood Risk from Rivers

Many watercourses in the Monmouthshire Local Planning Area are designated as Main River by NRW. These include (but not limited to) the following rivers for which NRW are the Risk Management Authority (RMA):

- River Usk
- River Wye
- River Monnow
- Olway Brook
- River Honddu
- Pill Brook
- Nedern Brook
- River Trothy
- Mill Reen/St Brides Brook

Maps showing the extent of the flood outlines from the NRW FMfP – Rivers are provided in Appendix A. More detail on the flood risk from rivers which affect key settlements is provided below.

5.2.1 Prominent watercourses and their flood zones

River Usk

The River Usk rises in the BBNP before entering the county of Monmouthshire to the north-west of Abergavenny, prior to flowing in a southerly direction. South of the town of Usk, the watercourse is joined by the Olway Brook. The Olway Brook rises to the south of Raglan and flows in a southerly direction where it is joined from the east by the Pill Brook.

The River Usk flows from Usk in a southerly direction towards the Newport City Council local authority area and the Severn Estuary.

The floodplain of the River Usk is extensive due to the low lying topography across its lower reaches, with FMfP Flood Zones 2 and 3 forming areas within close proximity to the watercourse, and extending into areas such as Abergavenny and Usk, as well as small villages along its course.

NRW flood defences are located along the River Usk in Usk, where they form a designated TAN-15 Defended Zone.

River Wye

The River Wye rises in the Cambrian Mountains in mid Wales before flowing in a south easterly direction towards Monmouthshire. The river enters the county from its eastern border, to the north east of Monmouth, before flowing through Monmouth and Chepstow and forming the eastern boundary of the county. The River Wye discharges into the Severn Estuary at Chepstow.

The FMfP Flood Zones 2 and 3 associated with the River Wye cover areas of Monmouth and Tintern, as well as small villages along its course.

A number of fluvial flood defences are present along the course of the River Wye. A flood gate is present at the subway entrance at Monmouthshire Rowing Club and an embankment is present by the A40 to the north of Wye Bridge, Monmouth. The presence of these defences does not provide a sufficient SoP to form a TAN-15 Defended Zone. In Chepstow, a 70m long flood wall is located to the left bank of the Wye, at Old Town Bridge. A small TAN15 Defended Zone is located to the eastern extent of Chepstow, as a result.

River Monnow

The River Monnow rises near Craswall, Herefordshire, near to the England Wales border, south of the Black Mountains. Its course marks the England and Wales border for a short distance, before flowing in a south easterly direction towards Grosmont and Skenfrith, before its confluence with the River Wye in Monmouth.

The floodplain of the River Monnow is extensive due to the low lying topography within Monmouthshire, with FMfP Flood Zones 2 and 3 forming areas within close proximity to the watercourse and extending into areas such as Skenfrith, an extensive area of Monmouth, and small villages along its course.

Flood defences along the River Monnow south of Osbaston, Overmonnow and Monmouth form a designated TAN-15 Defended Zone.

Mill Reen/St Brides Brook

The Mill Reen/St Brides Brook rises to the north of Parc Seymour in the Newport City Council authority area and flows in a south easterly direction towards Carrow Hill. The watercourse flows south within the authority area into the town of Magor. The flat topography of Magor results in areas of FMfP Flood Zones 2 and 3 being present within close proximity to the watercourse.

Nedern Brook

The Nedern Brook rises to the west of Caerwent flowing in a south easterly direction towards Caldicot. Its floodplain results in areas of FMfP Flood Zones 2 and 3 in eastern Caldicot and western Portskewett.

5.2.2 Monmouthshire County Council Flood Defence Schemes

There are three Monmouthshire County Council managed flood defences in the county, these are:

- Blake Street, Wyesham, Monmouth
- Station Road, Abergavenny
- Wonastow Road Pumping Station

It is unclear as to the form of these flood defences, their standard of protection, or the areas benefitting from them. They do not contribute to the TAN-15 Defended Zones. This list should not be considered exhaustive. Schemes involving localised drainage improvements and Property Flood Resilience (PFR) measures have not been included. This list also does not include active management of MCC assets and structures, such as debris screens.

Summary of the Risk of Flooding from Rivers and TAN-15

Due to the varied nature of the topography in Monmouthshire, floodplains for the larger rivers, including the River Usk, Wye and Monnow, are wide and flat in some locations. This allows water to cover large areas and subsequently large extents are located within FMfP - Rivers Flood Zones 2 and 3. Areas such as Abergavenny, Monmouth and Caldicot, are located within Flood Zones 2 and 3. Other settlements including Magor, Usk, Skenfrith and western Portskewett, are also located within these flood zones. Development proposals on Greenfield sites for highly vulnerable development within undefended areas of Flood Zone 3 are not acceptable, as stated within in the TAN 15 guidance.

In regard to other Main Rivers (for which NRW are the Risk Management Authority), detailed above, where FMfP - Rivers Flood Zones 2 and 3 are present, their floodplains are fairly confined and remain within close proximity to the watercourse. Development proposals within these zones should consider the risk of river flooding from the outset, including whether the site can be justified in the context of Section 10 of TAN-15.

Flood defences found along the River Usk and River Monnow are maintained by NRW. As a result of these flood defences, parts of the floodplain are categorised as a TAN-15 Defended Zones. The flood defences have a minimum 1% AEP event standard of protection. New development within the TAN-15 Defended Zone should be allocated within the LDP. Some flexibility is afforded to redevelopment opportunities in these areas, subject to development not resulting in an increase in flood risk to the site, the proposed site users, or third parties.

Some NRW flood defences do not meet the required standard of protection to form a TAN15 Defended Zone. Other RMA and private defences are also not included in the forming of TAN15 Defended Zone areas. In these instances, their standard of protection should be assessed within a site specific FCA, and in accordance with LLFA requirements. In the case of private defences, it is strongly recommended that further advice and information should be sought from the LLFA early in the development design process.

Development in TAN-15 Defended Zones and Flood Zones 2 and 3 are likely to be subject to site specific assessments and detailed flood modelling may be required. If a development is not protected from NRW flood defences, any proposed development in an undefended area is likely to require flood mitigation considerations and it may therefore be more challenging to meet TAN-15 requirements.

It should be noted that for sites within the Defended Zone, mitigation may also be required, and the designation of the Defended Zone does not preclude the need for a detailed assessment of flood risk.

It is recommended that Redevelopment proposals consider how to incorporate resilience measures to development plans from the outset.

5.3 Risk of Flooding from Seas

The Severn Estuary is a significant source of tidal flooding to the southern parts of Monmouthshire. Flooding is predominantly within the Gwent Levels where, due to the low-

lying nature of the land, the extent of Flood Zone 3 is significant and covers parts of the settlements of Rogiet, Caldicot and south of Chepstow.

Several watercourses within the Monmouthshire authority area are tidally influenced, with the extent of the floodplains for some of these watercourses being extensive. These include:

- River Usk
- River Wye
- Nedern Brook
- Mill Reen/St Brides Brook

A flood wall which protects parts of Chepstow from flooding is located on the banks of the River Wye. This area forms a TAN-15 Defended Zone.

Summary of the Risk of Flooding from Seas and TAN-15

Due to the low lying levels of the south of the county, the tidal floodplain is wide and flat, allowing water to cover large areas. Furthermore, downstream areas of tidally influenced rivers are located within FMfP for the Sea Flood Zones 2 and 3. The settlements of Magor, Undy, Rogiet, Caldicot and Chepstow are situated in Flood Zones 2 and 3 although these areas include defended zones.

Development proposals within these zones should consider the risk of flooding from the sea from the outset, including whether the site can be justified in the context of Section 10 of TAN-15.

Development in Flood Zones 2 and 3 is likely to be subject to site specific assessment and detailed flood modelling may be required.

5.4 Surface Water and Small Watercourses

Maps showing the extent of the flood outlines for surface water and small watercourse flood risk across Monmouthshire are provided in Appendix A.

The NRW FMfP – Surface Water and Small Watercourses indicates surface water flooding is predicted to follow topographical flow paths of existing small watercourses or dry valleys.

The town of Usk has the greatest risk of surface water and small watercourse flooding, with many areas located within Flood Zone 3. However, flooding in Usk is mostly limited to the outskirts of the town, rather than the town centre. Parts of the urban areas within Abergavenny, Monmouth and Caldicot are located within Flood Zones 2 and 3 and are at the high risk of surface water flooding.

Surface water flow paths within urban areas are shaped by urban infrastructure and topographic depressions. Surface water is channelled by the roads around settlements, pooling in areas of wide open spaces and topographic depressions.

Management of surface water runoff is a key consideration, whether a development site falls within a flood risk area or not. Intense development within a catchment could result in

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

increased runoff which if not appropriately managed could result in increased flooding within and downstream of the study area.

New developments can also increase pressure on sewer systems and urban drainage. It is therefore important to manage the impact of developments in a sustainable manner. As of 7th January 2019, all construction work in Wales with drainage implications, of 100 square metres or more, is required to have Sustainable Drainage Systems (SuDS) to manage onsite surface water (whether they require planning permission or not). These SuDS must be designed and constructed in accordance with the Welsh Government Standards for Sustainable Drainage.

5.5 Groundwater flood depths

The bedrock geology across the Monmouthshire County is varied but predominantly comprised of Mudstone, Siltstone and Sandstone. Mudstone tends to have low porosity and permeability whilst sandstone is regarded as more permeable and allows for the storage and movement of groundwater. As a result, upward percolation of groundwater and subsequent flooding should be considered in these areas. In the southern part of the county, the bedrock is predominantly comprised of limestone and sandstone. These rocks are more permeable and allow for the storage and movement of groundwater.

Areas of superficial deposits in Monmouthshire are limited and are predominantly present around the rivers in the county. The superficial deposits overlaying the bedrock in the Monmouthshire County authority area are comprised in some areas of clay which is predominantly impermeable, and in others of Till which is generally permeable. The variation of superficial deposits throughout the Monmouthshire County suggests that groundwater flooding could present a localised risk to some areas.

Maps showing the indicative groundwater flood depth in Monmouthshire are provided in Appendix A. The map also assesses the risk of groundwater emergence and not of resulting groundwater flooding. For groundwater flooding to occur it is often necessary for groundwater to have nowhere to go without ponding and flooding an area first.

The majority of the county has groundwater that is at least 5m below the ground surface or lower. In the southern part of the county around Magor, Caldicot and Portskewett, groundwater levels are within 0.5 and 0.025m of the ground surface; this indicates that there is a greater risk of groundwater emergence in these areas.

Towns and villages along the River Usk, from Abergavenny to Usk, are also identified as areas where groundwater levels are within 0.5 and 0.025m of the ground surface. These areas are mainly found within close proximity to the River Usk and indicate that groundwater emergence in these areas is more likely.

The majority of the county, particularly in its southern extent, has groundwater that is at least 5m below the ground surface or lower.

A high-risk groundwater zone does not automatically preclude the use of infiltration techniques for Sustainable Drainage Solutions (SuDS), although they are less likely to be

suitable. A site-specific assessment of the potential for infiltration techniques shall always be required by the SAB.

5.6 Sewer flooding

DCWW are responsible for sewer infrastructure across the study area and recording sewer flooding incidents.

DCWW have provided detail of historical incidents and active risk areas. Historical flooding incidents are recorded relating to public foul, combined, or surface water sewers. These records display the number of properties that experience internal and/or external flooding. A summary of the spatial distribution of historical sewer flooding incidents by electoral ward is summarised in Table 5-2. Wards that cross the boundary between Monmouthshire and BBNP are also included in this table. Wards recorded as having 'no data' are not listed in Table 5-2.

This data shows that the wards with the highest number of flood incidents are the Caerwent, Priory and Cantref with 27, 26 and 25 sewer flood incidents recorded, respectively. The remaining wards have all experienced less than 10 incidents of sewer flooding since this record began.

DCWW are working to reduce the number of sewer flood incidents by investing in maintenance and improvements of the sewer network.

DCWW have not provided any information regarding the predicted flood risk from the sewerage network.

Table 5-2 Sewer Flooding Incidents by Electoral Ward: inclusive of wards that cross the boundary between Monmouthshire and the Brecon Beacons National Park

Electoral Ward	Number of sewer flooding incidents
Caerwent	27
Cantref	25
Castle	9
Croesonen	1
Crucorney	4
Dewstow	1
Dixton with Osbaston	4
Drybridge	1
Goetre Fawr	3
Green Lane	8
Langstone	1
Lansdown	3
Llanelly Hill	6
Llanfoist Fawr	3
Llangybi Fawr	1

Electoral Ward	Number of sewer flooding incidents
Llanwenarth Ultra	2
Mardy	3
Overmonnow	1
Priory	26
Raglan	4
Shirenewton	10
St. Arvans	2
St. Christopher's	3
The Elms	4
Thornwell	1
Tidenham	4
Trellech United	1
Usk	6
West End	2
Wyesham	1

5.7 Flooding from artificial sources

Artificial sources of flooding include reservoirs within and upstream of the county which could pose a flood risk to the Monmouthshire LPA area. Maps showing the predicted flood extent in the event of reservoir breach/failure from reservoirs are provided in Appendix A. The reservoirs which pose a flood risk to the county are:

- Caban Coch Reservoir
- Cairn Mound Reservoir
- Claerwen Reservoir
- Court Farm Reservoir
- Grwyne Fawr Reservoir
- Llandegfedd Reservoir
- St Pierre Lake
- Talybont Reservoir
- Usk Reservoir
- Wentwood Reservoir

The NRW FMfP – Reservoirs mapping indicates that Abergavenny, Caldicot, Monmouth and Usk where the floodplains are flat and wide, are identified as the areas most affected due to a reservoir breach or overtopping.

The failure of a reservoir can cause catastrophic damage due to the sudden release of large volumes of water. Reservoirs in the UK have an excellent safety record, and NRW is the enforcement authority for the Reservoirs Act 1975 in England and Wales. All large (reservoirs with a raised capacity of 10,000 cubic metres, or more, above natural ground

level which have not been designated as high-risk reservoirs) and designated high risk by NRW must be inspected and supervised by reservoir panel engineers.

Reservoirs in Wales are categorised according to the risk they pose to the public and environment in the unlikely event of a breach. The amount of development in the inundation catchment is an important factor in determining a reservoir's risk category. Land use planning can inadvertently lead to a reclassification of risk if new development is located within the inundation area of a reservoir. This brings additional maintenance and insurance implications for owners and operators of reservoirs. Any potential implications for reservoir owners or operators, such as allocating development in inundation areas, should be raised by the planning authorities openly and constructively.

6 Flood Risk Appraisal

As discussed in Section 1.3, typically, SFCAs are completed in three stages, with an increasing level of detail required in the analysis at each stage.

The preparation of the RLDP is a lengthy process, requiring review, update and consultation, gaining a large evidence base to inform the revised document. As noted in Section 1.2, as part of the early evidence base to inform the RLDP Deposit Plan, a regional South-East Wales SFCA was prepared, further supported by a high-level assessment of all submitted candidate sites, identifying the risk of flooding from all sources to the sites. This option was chosen as an alternative to a full Stage 2 SFCA as the policy position was unclear at the time, and this method was more suitable to inform the site selection process.

The update to TAN15 was released in 2025, and consequently it is considered appropriate to assess the sites at highest risk of flooding against the updated policy document. Therefore, an independent Flood Risk Appraisal has been undertaken for nine of the candidate sites that had already been identified and consulted on in the Deposit RLDP, and are currently under consideration for allocation in the Replacement Local Development Plan. These assessments fulfil the criteria for a Stage 2 SFCA, incorporating a high-level assessment of LDP candidate sites.

For clarity, the candidate sites included within this appraisal process are those which have been identified as at some level of risk following the initial flood risk screening undertaken in 2021. If a site has not been reviewed within the assessment process, it has been screened as acceptable in principle on the basis of the Flood Map for Planning and the 2021 screening assessment.

The Flood Risk Appraisals have assessed the risk of flooding from all sources, using the datasets noted in Section 4.4, as well as detailed flood model data where available. The purpose of the Appraisal is to assess whether sites are likely to comply with the requirements of TAN-15 and as necessary, make recommendations for further evaluation and management of flood risk.

The Flood Risk Appraisals for the 9 candidate sites are included in Appendix B and a summary of the sites are provided in Table 6-1.

Table 6-1 Site Summary

Site ID	Site Name	Proposals	Flood Risk Source	Likely to Comply with Requirements of TAN- 15
HA2 and EA1m	Land to the East of Caldicot / North of Portskwett	Residential-led, mixed use	Rivers, Sea and Surface Water and Small Watercourses	Yes
HA13	Land adjacent to Piercefield Public House, St Arvans	Residential	Surface Water and Small Watercourses	Yes
EA1c	Land North of Wonastow Road, Monmouth	B1, B2, B8 development (Offices/ general industrial/ storage or distribution)	Surface Water and Small Watercourses	Yes
EA1b	Poultry Units, Rockfield Road, Monmouth	B1 (Offices)	Rivers and Surface Water and Small Watercourses	Yes
EA1h	Gwent Europark, Magor	B1, B2, B8 development (Offices/ general industrial/ storage or distribution)	Sea and Surface Water and Small Watercourses	Yes
HA4	Land at Leasbrook, Monmouth	Residential	Rivers and Surface Water and Small Watercourses	Yes
HA10	Land south of Monmouth Road, Raglan	Residential	Surface Water and Small Watercourses	Yes

Site ID	Site Name	Proposals	Flood Risk Source	Likely to Comply with Requirements of TAN- 15
HA7	Land at Drewen Farm, Monmouth	Residential	Surface Water and Small Watercourses	Yes
HA11	Land East of Burrium Gate, Usk	Residential	Very Low from all sources	Yes

7 Requirements for a Flood Consequences Assessment

7.1 What is a site-specific Flood Consequences Assessment?

Site specific FCAs are carried out by (or on behalf of) developers to assess the risk and consequences of flooding to a development, and on flood risk elsewhere.

An FCA is submitted with planning applications to demonstrate how the requirements of TAN-15 shall be satisfied.

An FCA should demonstrate how flood risk will be managed over the lifetime of the development, taking into account climate change and the vulnerability of site users. The assessment can also be used to establish whether appropriate avoidance or mitigation measures can be incorporated within the development design. This ensures that over its lifetime, development minimises risk to life, damage to property and disruption to people living and working on the site, as well as not increasing flood risk elsewhere.

7.2 When are site-specific Flood Consequences Assessment's required?

Site specific FCAs are required in the following circumstances:

- Any proposals for development in Flood Zones 2 and 3 of the FMfP for Rivers, Sea and Surface Water and Small Watercourses²².
- Proposals for development within a TAN-15 Defended Zones;
- Proposals for development within Critical Drainage Areas identified by the LLFA or LPA²³; and/or
- At the request of the LPA, NRW, or LLFA where there are reasonable concerns
 that the development will be at flood risk or has the potential to increase the flood
 risk for others.

An assessment of flood risk (sometimes referred to as an FCA) may also be required by the LLFA or IDD for Ordinary Watercourse Consent or by NRW for a Flood Risk Activity Permit for Main River works. However, as these consents are separate to the planning system TAN-15 does not strictly apply but may provide a useful framework for assessment. In these circumstances the LLFA, IDD or NRW will be able to provide guidance on their requirements for a proportionate assessment of flood risk.

7.3 What are the requirements of a site-specific Flood Consequences Assessment?

Section 6 of TAN-15 sets out the requirements of an FCA.

²² No highly vulnerable development on greenfield land in Flood Zone 3 should be proposed as this is contrary to the requirements of TAN-15

²³ It should be noted that Monmouthshire County Council do not currently have any CDA's

The assessment of flood risk in the FCA should help the planning authority determine whether the risk and consequences of flooding are acceptable and can be appropriately managed over the lifetime of development. An assessment of a range of potential flooding scenarios up to and including the 0.1% AEP flood event should be included, with an allowance for climate change in line with current Welsh Government guidance.

FCAs for development sites should follow the approach set out in Figure 2 of TAN-15 and technical guidance provided by NRW²⁴. Whilst this SFCA includes local policies and guidance for the MCC authority area, there is no 'one size fits all' approach to managing flood risk. It is strongly advised that Developers contact NRW and the LLFA to gather further information on any specific flood risks to the proposed development site.

Section 8 provides further guidance and information on the need for FCAs across the MCC LPA area.

²⁴ https://naturalresources.wales/flooding/modelling-for-flood-consequence-assessments/?lang=en

8 Flood Consequences Assessment Guidance

The following chapter seeks to capture the latest advice and understanding of TAN-15. Additional guidance is provided on how MCC interpret and apply the policy, including locally specific approaches to managing flood risk on developments.

8.1 Use of Defended Zones and Flood Defences

8.1.1 Definition of Defended Zones

TAN-15 Defended Zones show areas of land that benefit from formal flood defences that are owned and maintained by Risk Management Authorities.

Flood defences built before 1 January 2016 must have the following level of protection against flooding:

- 1 in 100 (1% AEP) chance of occurring in any given year for rivers
- 1 in 200 (0.5% AEP) chance of occurring in any given year for the sea

Flood defences built after 1 January 2016 should meet the same levels of protection but also include:

- An allowance for a design freeboard (an added allowance for defence height to cover uncertainty in modelling)
- An allowance for the effects of climate change

The consequence of the above is that new Defended Zones will need to be of a higher standard than many existing Defended Zones. Furthermore, it may not be possible to assign a Defended Zone to new flood defence schemes that take a more adaptive approach to climate change, such as is commonly applied to coastal flood defence schemes (further outlined in Section 8.1.4). Further guidance around this matter may be forthcoming and we recommend that NRW's website is consulted for the latest guidance.

Where new flood defences are planned for through a development, this will not result in new or extended Defended Zones until NRW are satisfied that the qualifying defences provide an acceptable standard of protection, and it is strongly advised that NRW are consulted with at the earliest stage about the scheme.

8.1.2 Breach and blockage risk

The consequences of flooding can be particularly severe in the event of defences being overtopped or breached. Land protected by defences can be extremely vulnerable in the event of overtopping or breach because of the speed of flooding in such circumstances. In addition, flood water can carry a significant amount of debris, which has the potential to cause blockage at structures.

Where appropriate, the FCA should demonstrate that in the event of overtopping, breach or blockage the consequences of flooding can be managed to an acceptable level. If a

development site benefits from existing flood alleviation measures, the FCA should assess the impact and consequences of any breach/overtopping event. Consideration should also be given to the standard of protection provided by such measures over the whole lifetime of development.

NRW should be consulted for advice on breach and blockage scenarios to be assessed for flood defences and structures which may influence flooding locally. Detailed guidance on climate change allowances for planning purposes is published separately by the Welsh Government.

The MCC authority area has a large number of small watercourses, often culverted to facilitate highway crossings. Catchments can be small and steep leading to substantial flows in flash flood events. Blockage of these assets can cause or exacerbate flooding to a development site. This risk may not be immediately obvious from the Flood Map and may have its source some distance from a site. Developers are advised to consider all potential sources and flow paths for flooding, and to consult with the LLFA for information and guidance. The LLFA may request hydraulic modelling where there are reasonable concerns of proposed development being placed at flood risk or increasing the risk of flooding elsewhere.

8.1.3 Private flood defences

Private defences and other defences not managed by an RMA do not generate TAN-15 Defended Zones, but in some instances deliver a similarly robust standard of protection.

Where an authority has confidence in the robustness of the defence and have aspirations for development in areas benefitting from those defences, they are encouraged to use their powers as an RMA as stated in the Flood and Water Management Act 2010: Using the Designation of 3rd Party Assets, to take responsibility for the asset. There are no known designated assets across the MCC area. However it is understood that there are a number of known private defences that provide a benefit to a wide area. It is strongly advised that developers contact the LLFA for further information and guidance in such areas.

8.1.4 Flood defences for development

New development should not rely on construction of new flood defences; particularly those that will remain in private ownership given the challenges of ensuring long term maintenance and renewal. However, there may be circumstances where an RMA may agree to adopt privately constructed defences if they provide a wider community benefit. However, areas will only be designated as Defended Zones if they meet the specific requirements of NRW and Welsh Government (See Section 8.1.1).

Development proposals will be supported where they form part of a strategy of flood risk reduction to better protect existing development. An example would be the redevelopment of previously developed riverside sites in such a way as to benefit existing properties set back further from the river.

Development within a flood zone will often require some form of flood mitigation, although it is essential that this is achieved without increasing flood risk to others. Flood mitigation approaches used should, wherever possible, be simple and passive, requiring little or no maintenance. Such approaches would include raising floor and ground levels, whilst recognising the need to not increase flood risk to others.

8.2 Urban Centres and Land Use – Resilience of Existing Communities

TAN-15 recognises that there may be circumstances where the planning authority may be sympathetic to changes of use, conversions and redevelopment proposals which bring benefits to an area, building or community. Potential examples include a replacement dwelling that is designed to raise the property above predicted flood levels, or a replacement industrial unit that incorporates flood resilient design measures.

TAN-15 advises the following for 'Redevelopment':

- sites within TAN-15 Defended Zone are acceptable where proposals do not over intensify use and are consistent with the acceptability considerations of Section 11 of TAN-15;
- residential proposals within Flood Zones 2 and 3 should not occur at ground floor level; and
- when considering the acceptability considerations of Section 11, the flood frequency thresholds and tolerable conditions may be applied with more flexibility, where the ability to substantially redesign a development is limited.

Across the MCC authority area, it is considered that the flexibility afforded to 'Redevelopment' opportunities within TAN-15 should not preclude the need for sustainable development which manages flood risks to an acceptable level. Future Wales: The National Plan 2040 encourages sustainable growth and efficient patterns of development and regeneration based on existing communities. Flood risks should therefore not blight existing communities, whilst also being a key consideration on the suitability and form of development in existing settlements.

Across MCC, redevelopment proposals at risk of flooding should consider the following aspects:

- Redevelopment sites in the TAN-15 Defended Zone should not over intensify the use of a site. In considering this advice MCC will give regard to the general intensity and nature of development in an area and the level of flood risk associated with the development once risk mitigation and management measures have been implemented. For example, a greater intensity of Redevelopment may be allowed in an already built-up area or where floor or ground raising results in an extremely low residual flood risk.
- TAN-15 advises that residential development should not occur on the ground floor of redevelopment proposals within Flood Zones 2 and 3. Whilst on small developments the entire curtilage of residential sites should be considered as a whole, on redevelopment sites this is rarely practical where existing buildings are to be repurposed or passive defences

such as ground raising mitigates flood risks to the site. The frequency thresholds of TAN-15 Figure 5 indicate that residential development is permissible where frequency thresholds are met, and the tolerable conditions of Figure 6 indicate that access paths to Highly Vulnerable development can be considered separately. Consequently, there may be instances where ancillary development such as undercroft parking, bin/bike storage and maintenance areas (i.e. less vulnerable elements of the development) can be sited on the ground floor. In rare instances, residential ground floor development may be permitted where the frequency thresholds and tolerable conditions are met in their entirety and where ridged application of this requirement would run contrary to the LDP's placemaking objectives.

- Where redevelopment proposals propose to rely on the flexibility of the frequency thresholds and tolerable conditions to justify a development, comprehensive justification should be provided for why the ability to substantially redesign a development is limited. Where this justification is accepted, further details should be submitted with regard to how resilient and resistant design has been incorporated into the proposals. Resilient design should be considered in line with Ciria Code of Practice (further details in Section 9). Flood Response Plans should not be relied upon to justify a redevelopment site at risk of flooding but should be provided to demonstrate how proposed site users can respond safely during a flood event.

8.3 Surface Water and Small Watercourse Risk and TAN-15

Recent advances in methods, data availability, and software have delivered significant improvements in the accuracy of surface water and small watercourse flood mapping in Wales, showing a good degree of correlation to known flood events. However, as the risk mapping remains broadscale the intricacies of local topography, drainage, and small watercourse features means that the flood map for surface water and small watercourse flood risk can be prone to inaccuracies, although it is generally precautionary. Therefore, areas in the surface water and small watercourse flood zones should be carefully reviewed with knowledge of the location and limitations of the broadscale modelling approaches used. The LLFA can be an important source of knowledge in this regard.

Given the limitations in the accuracy of surface water and small watercourse flood risk and the varied nature of flooding (from sizable streams and culverts to localised depressions), the risks should be taken seriously, appropriately investigated and managed. Development should be located away from areas of surface water flood risk where possible.

Across the Monmouthshire LPA area, surface water and small watercourse flooding is a significant source of risk that should be carefully considered against development proposals.

Development proposals should be supported by an assessment of flood risk which considers small watercourses, surface water flow paths and the potential for ponding on site. In some instances, it may be possible to better define the flood zones associated with small watercourses to gain greater understanding of the baseline risk to a site, though this

will not always be necessary. In such instances, evidence of hydraulic modelling and an FCA shall be required to support any application for development.

In cases of more than the most minor surface water flood risk the LPA will expect planning applications to be supported by a proportionate FCA. Where the flood risk is attributed to a small watercourse, this is likely to require an assessment similar to if the flood risk were mapped as river flooding, with the requirements of Sections 10 and 11 of TAN-15 considered against the proposals.

Where flood risk is associated directly with surface water ingress to a site, the requirements of Section 10 do not apply. However, the acceptability criteria as set out in Section 11.4 of TAN-15 must still be satisfied.

Development proposals should be accompanied by a comprehensive surface water drainage strategy that demonstrates how SuDS shall be used to manage surface water flows across a development site, in line with the Statutory Standards for SuDS in Wales. Where the planning and the SAB process do not align, planning submissions should be accompanied by a Drainage Statement, in line with Section 7.6 of TAN-15. It is advisable for developers to consult with the SAB with regards to their requirements for SuDS across the Monmouthshire LPA area.

There may be instances in which developments have the potential to result in a change in surface water flow regime in the wider catchment. Such changes to flow regime may result from developments located close to the watershed, where surface water strategies propose to convey flows towards alternative catchments, for example. In any such instance, the LLFA may request an FCA to demonstrate that any such proposals shall not result in detriment or downstream capacity concerns.

The LLFA will be able to provide further advice on the requirement and scope of an FCA for surface water and small watercourse flood risk, if required. Guidance may also be published on the LLFA website.

8.3.1 Critical drainage areas

An LLFA may choose to identify areas that have particularly significant drainage and/or surface water flood risk issues. These areas will be identified as Critical Drainage Areas (CDAs). In these areas an FCA will always be required, and specific requirements or guidance may apply. At the time of this report no CDAs are identified in the Monmouthshire LPA area.

8.4 Groundwater Flood Risk and TAN-15

TAN-15 does not specify any requirements for groundwater flood risk, other than the risk of groundwater flooding should be considered as part of an FCA. However, it would be advisable to locate developments away from areas where groundwater is less than 0.025m below the ground surface without further groundwater monitoring and detailed assessment being undertaken.

In instances where groundwater levels may interact with development proposals or there is considered a risk of groundwater flooding, developers are advised to engage with the LLFA to determine site specific requirements for determining and managing flood risks.

8.5 Flood Risk from Sewers and TAN-15

TAN-15 does not specify any requirements for sewer flood risk, other than that it should be considered as part of an FCA. The LLFA and DCWW should be consulted to provide specific advice on any known history of sewer flooding and any remedial action taken.

8.6 Climate Change – lifetime of development

The planning authority should be satisfied that any development it allocates will be resilient to flooding and coastal erosion for the duration of its lifetime. Using the most up to date national climate change projections, planning authorities should ensure new development will be safe places to live now and in the future.

Generally, it is appropriate to think of new dwellings as having a lifetime of 100 years. Lifetimes for other types of development will vary, but 75 years is considered a reasonable rule of thumb. Planning authorities should apply this principle in a precautionary manner in relation to all types of development²⁵.

The FMfP has been prepared based on an assumed lifetime of development of 100 years. Where new developments will have shorter lifetimes, it is reasonable that the flood consequences assessment focusses on potential risks during the development's expected lifetime^{26.} Consequently, development of a lower lifetime may result in flood risk mapping quite different that indicated by the FMfP.

Across the Monmouthshire administrative area, it is considered that 75 years is an appropriate rule of thumb for most development types (with the exception of residential), in line with the guidance contained within TAN-15. Any proposals for a shorter Lifetime of Development shall be considered on a case by case basis.

25 TAN-15 para 10.28 26 TAN-15 para 10.29

9 Development and Resilience to Flood Risk

Improving the resilience of communities at risk of flooding now and under potential climate change scenarios is a priority for planning authorities. Design considerations will be a key factor when determining whether development is acceptable in flood risk areas. The most effective solutions will combine both site-level and property-level resilience measures.

Wherever possible, development should be directed to Flood Zone 1, where there is a lower risk of flooding. Section 13.2 of TAN-15 advises that any development in Zones 2 and 3, and the TAN-15 Defended Zones, must have resilience to flooding built in at site and property level

Section 13.6 of TAN-15 guides assessments to industry standard advice on incorporating resistance and resilience into development through design. Advice on incorporating resistance and resilience into development through design is available from the Construction Industry Research and Information Association (CIRIA), including a Code of Practice and Guidance for Property Flood Resilience. The code of practice sets out recommendations for mitigation in categories defined as: realignment, resistance, resilience and response.

Potential measures to reduce and manage flood risk on a site, in line with these Codes of Practice are outlined below. It should be recognised that even with such measures it will not be possible to develop all sites in compliance with TAN-15 and the Acceptability Criteria.

9.1 Realignment

Realignment explores opportunities to reorient the flood receptor (i.e. the proposed development) and amend the flood pathways.

9.1.1 Site level flood risk mitigation

Flood risk from all sources should be considered at an early stage in deciding the layout and design of a site to provide an opportunity to reduce flood risk within the development. Site level resistance and resilience measures should have the twin aim of reducing the amount of flood water that can enter the site and effectively managing any water that does reach the site, so it does not impact on households and other occupiers/users.

Flood mitigation and resilience can involve the use of blue and green infrastructure and SuDS to deliver wider benefits alongside flood mitigation such as water quality, amenity and biodiversity.

9.1.2 Sequential Approach to Site Layout

A sequential, risk-based approach should be applied to try and locate more vulnerable development uses away from flood zones to higher ground, while more flood compatible development (e.g. landscaping, recreational space) is located in higher risk areas. However, water compatible or less vulnerable uses in floodplains should consider the

nature of the development, flood depths and hazard including evacuation procedures and flood warning. The nature of risk to water quality may also need to be considered and mitigated in some cases, particularly with parking areas so accumulated hydrocarbons and other vehicle related pollutants are not released to the aquatic environment.

Waterside areas, or areas along known flow routes, can be incorporated into the masterplan as multi-functional green infrastructure, being used for recreation, amenity and environmental purposes, allowing the preservation of flow routes and flood storage, and at the same time providing valuable social and environmental benefits contributing to other sustainability objectives. Landscaping should ensure safe access to higher ground from these areas and avoid the creation of isolated islands as water levels rise.

9.1.3 Modification of ground levels

Modifying ground levels to raise the land above the required flood level is an effective way of reducing flood risk to a particular site in circumstances where the land does not act as conveyance for flood waters. However, care must be taken at locations where raising ground levels could adversely affect existing communities and property as this can result in significant changes to how flood water moves around the site, introducing flood risk to areas that were not at flood risk previously. Where ground levels are modified, mitigation measures must be considered to stop the introduction of new flood risk or off-site effects.

In most areas at risk of river flooding, raising land above the floodplain would reduce or alter conveyance or flood storage in the floodplain and would likely impact flood risk downstream or on neighbouring land. Compensatory flood storage should be provided, and would normally be on a level for level, volume for volume basis on land that does not currently flood but is adjacent to the floodplain (in order for it to fill and drain). It should be in the vicinity of the site and ideally within the red line of the planning application boundary.

Compensatory flood storage may not be required for tidal inundation given the effectively infinite volume of the sea. However, it must be demonstrated that the flooding from the sea is not affected by volume or conveyance changes, and this may require hydraulic modelling.

9.1.4 Redirect Flow Pathway and Introduction of Buffer strips

To mitigate the risk of flooding on a proposed development site, opportunities to realign the flood receptor (i.e. the proposed development) and realign the flood pathways could be sought. These could include:

- Redirecting flow pathways
- Changing ground levels
- Using SuDS to manage surface water flows on the site

Opportunities to incorporate these measures into the site should be explored during the site design stage and identified within a site specific FCA. This should be supported by hydraulic modelling, where appropriate.

The provision of a buffer strip to 'make space for water' allows additional capacity to accommodate climate change and ensure access to the watercourse, structures, and defences is maintained for future maintenance purposes. Additionally, retaining a watercourse within open space is supported as it removes the responsibility from property owners to maintain (physically and financially) riverbanks. It also enables the avoidance of disturbing riverbanks, adversely impacting ecology and the need to provide engineered riverbank protection. Building adjacent to riverbanks can also cause problems to the structural integrity of the riverbanks and the building itself, making future maintenance of the watercourse much more difficult.

It is recommended that an undeveloped buffer strip alongside main rivers and ordinary watercourses is provided for maintenance/access purposes, and that developers explore opportunities for riverside restoration or public open space as part of any development.

A flood risk activity permit may be required for all works:

- On or near a main river
- On or near a flood defence structure
- On or near a sea defence
- In a floodplain

Further guidance on obtaining a flood risk activity permit and activities requiring a flood risk activity permit are available from the NRW website²⁷.

Ordinary watercourse consent may be required for land drainage consenting for ordinary watercourses and LLFAs and IDDs may have similar requirements i.e. for maintenance purposes.

9.1.5 Raised floor levels

When designing the layout for a development, consideration should be given to the potential effects of flood risk and great care must be taken so that development is safe and there are no adverse effects elsewhere, including to existing land, property, or people. In areas potentially at risk from surface water flooding particular attention should be given to proposed ground levels, drainage design, and provisions for exceedance flows.

Where there is a residual risk of flooding (from any source) to properties within a development, the measures to address the effects would normally include raising internal floor levels above the minimum level specified by the building regulations so that potential risks are addressed. The raising of internal floor levels and threshold levels within a development reduces the risk of damage occurring to the interior, furnishings, and electrics in times of flood.

Section 11 of TAN-15 provides guidance on the frequency thresholds in which development must be flood free and the tolerable conditions for extreme flood events. It is advisable that

^{27 &}lt;a href="https://naturalresources.wales/permits-and-permissions/flood-risk-activity-permits/environmental-permits-for-flood-risk-activities/?lang=en">https://naturalresources.wales/permits-and-permissions/flood-risk-activity-permits/environmental-permits-for-flood-risk-activities/?lang=en

the floor levels of development which is proposed within an area at risk of all sources of flooding should be set based on these requirements.

The additional height that the floor level is raised above the maximum water level is referred to as the 'freeboard'. Additional freeboard may be required because of risks relating to blockages to the channel, culverts, or bridges or climate change. For example, TAN-15, and the Welsh Government Climate Change Guidance, advises that an assessment of risk should be undertaken using the upper end estimate of climate change (alongside the central estimate) to inform mitigation measures to ensure the long-term resilience of developments.

Single storey buildings such as ground floor flats or bungalows are especially vulnerable to rapid rise of water (such as that experienced during a breach). Figure 6 within TAN-15 displays the tolerable conditions in an extreme flood event (0.1% AEP), below which development may be acceptable. This risk can be reduced by use of multiple storey construction and raised areas that provide an escape route. However, access and egress can still be an issue, particularly when flood duration covers many hours or days. Similarly, the use of basements in areas at risk of flooding should be avoided.

9.1.6 Restrict Use of the Building

When determining where development should be placed, it is essential to identify the vulnerability of a development and to attempt to locate more vulnerable development uses away from areas at risk of flooding.

A sequential approach to site masterplanning can therefore be beneficial to locate more vulnerable land uses away from flood risk areas. However, in instances such as re-use of an existing building, such measures may not be as easily identifiable. For redevelopment opportunities within flood risk areas where the ability to substantially redesign a development is limited, it is likely to be most practicable to place all more vulnerable aspects of the development on the upper storeys, retaining less vulnerable or ancillary development to the ground floor.

Section 10 of TAN-15 notes that where proposals for redevelopment in Flood Zones 2 and 3 include residential use, local authorities should ensure that there is no residential use on the ground floor and therefore development is restricted to less vulnerable uses. Section 8.2 of this report sets out MCC's considerations for the flexibility afforded to 'Redevelopment' opportunities within TAN-15, with particular regard to the siting of residential development on the ground floor of redevelopment proposals within Flood Zones 2 and 3. In rare instances, residential ground floor development may be permitted ridged application of this requirement would run contrary to the LDP's placemaking objectives. Such instances shall be considered on a case by case basis, and will likely be subject to requirements for appropriate property level resilience measures to be incorporated into development proposals.

New development proposals for emergency services must avoid flood risk areas. Local authority and emergency services command centres and hubs for the emergency services

should be designed to be flood free during any 0.1% event including an allowance for climate change and therefore located solely in Flood Zone 1. Whilst TAN-15 offers some flexibility for redevelopment opportunities, consideration should be given to the scale and nature of the proposals and their suitability in areas of flood risk.

9.1.7 Surface Water Management

Suitable surface water management measures must be incorporated into new development designs in order to reduce and manage surface water flood risk to, and posed by, the proposed development. This must be achieved by incorporating SuDS. SuDS are typically softer engineering solutions inspired by natural drainage processes such as ponds and swales which manage water as close to its source as possible.

The integration of SuDS into developments is an opportunity to achieve multiple positive outcomes, by combining crucial drainage and flood defence assets with green infrastructure and high-quality public realm. In Wales, all construction work greater than 100 sqm with drainage implications, including new developments, must now incorporate Sustainable Drainage Systems (SuDS) that comply with the National Statutory SuDS Standards. Developers must gain approval for their drainage from a SuDS Approval Body (SAB) before construction can begin. Further guidance on SuDS is available from the Welsh Government website²⁸.

9.2 Resistance and Resilience

Property Flood Resilience (PFR) measures can be used to reduce the impact of flooding to a development where traditional flood defence schemes are not a viable option. PFR takes two forms, resistance and resilience measures. Resistance measures focus on trying to keep water out of a property using door barriers, flood doors, automatic airbricks, pumps and non-return valves. It is acknowledged that these measures do have a seepage allowance and so a small volume of water is still likely to enter a property with PFR measures.

Resilience measures focus on accepting that water will enter the property and looks at ways to quickly return the property back to normal after a flood. This can include raising white goods and boilers above floor level, raising kitchen units and electric sockets, and using tiles for flooring instead of carpets.

Property Flood Resilience measures may be acceptable as a form of mitigation, but only if the development meets the criteria set out in TAN-15.

Developers should consider PFR measures for any new developments which flood in the 0.1% AEP plus climate change event and to ensure safety and security of residents. Further information on PFR can be found on the BeFloodReady²⁹ website and the National

²⁸ https://naturalresources.wales/guidance-and-advice/business-sectors/planning-and-development/advice-for-developers/sustainable-drainage-systems-suds/?lang=en

²⁹ https://www.befloodready.uk/

Flood Forum³⁰. Flood resistance measures should be undertaken in accordance with the CIRIA Property Flood Resilience Code of Practice³¹ and ensure products have been tested and awarded the BSI (British Standards Institute) Kitemark for Flood Protection BS 851188.

9.3 Flood Response Planning

Flood response planning is essential for managing flood related incidents. From a flood risk perspective, flood response planning can be broadly split into three phases: before, during, and after a flood. These measures involve developing and maintaining arrangements to reduce, control or mitigate the impact and consequences of flooding and to improve the ability of people and property to absorb, respond to, and recover from flooding. TAN-15 (Section 5.6) states that development plans must be based on a sound understanding of the emergency services' ability to respond to flooding, therefore the views of key stakeholders such as Emergency Planning teams and the emergency services should be sought at this stage.

Safety is a key consideration for any development and includes residual risk of flooding, the availability of adequate flood warning systems for the development, safe access and egress routes, and evacuation procedures.

9.3.1 Access and egress

TAN-15 requires that safe access and egress is available to and from the development in all modelled scenarios. This should consider all sources of flood risk, including surface water. As a minimum, safe access and egress routes should comply with the tolerable conditions of TAN-15 Figure 6, though TAN-15 acknowledges that flexibility can be applied to these conditions for Redevelopment proposals.

For any development where there is a flood risk to the development or the associated highways, a Flood Response Plan (Section 7.2.2) may be required to inform site occupants of a safe access and egress route to and from the site. Such requirements shall be considered on a case-by-case basis, and early engagement with the LLFA and LPA is encouraged.

9.3.2 Flood Response Plans

Section 11.4 of TAN-15 identifies the acceptability criteria which developers and planning authorities should ensure are met. Within this criteria, it identifies that flood emergency plans and procedures should be in place. This should be applied to all sources of flooding (river, sea and surface water flooding).

A Flood Response Plan should be created for any development where there is a flood risk to the development itself or the surrounding highways. The plan should detail the flood risk to the development, the actions occupants of the site should take before, during, and after

31 https://www.ciria.org/CIRIA/Resources/Free publications/CoP for PFR resource.aspx

³⁰ National Flood Forum

flooding and the safe access and egress routes available during a flood under all conditions.

The plan should always favour a proactive rather than reactive approach i.e. if buildings on the site are at risk of flooding occupants should have already left their properties before flood water enters.

The plan should be easy to follow giving clear instructions on what actions should be taken before, during, and after a flood.

Flood Response Plans should be considered in line with the Association of Directors of Environment, Economy, Planning and Transport (ADEPT) guidance on flood risk emergency plans for new developments^{32.} Flood Response Plans should be communicated to all future residents and users of a site, and regularly tested and revised to ensure familiarity in the event of a flood.

9.3.3 Flood Alerts and Warnings

NRW operates a Flood Warning Service³³ for some areas deemed to be at risk of flooding from rivers and seas and does not cover other sources of risk. This service covers approximately 60% of properties at risk from these sources of flood risk, and NRW is continually working to extend this service. These warnings have been designed to give the public advance notice of flooding. Each flood alert and warning area is assigned an individual code to allow NRW to make flood alerts and warnings specific to areas at risk. The NRW FRAW mapping³⁴ can be used to show the specific codes that cover a potential development site.

A requirement of TAN-15 is that for proposed developments that are at risk of flooding, effective warning is provided. Therefore, occupants of these sites should be encouraged to sign up and receive Flood Alerts, Flood Warnings, and Severe Flood Warnings if available. If a flood event is forecast, alerts and warnings are issues by landline, mobile, text, or email using a set of four easily recognisable codes, as shown in Table 9-1. Generic advice and examples of actions to be taken on receipt of the alert or warning are also shown in the Table 9-1. Using these warnings, along with local knowledge, site occupants are able to take effective action, to reduce the consequences of flooding.

To identify when heavy rain is forecasted, which could result in surface water flooding, the Met Office National Severe Weather Warning Service can be used³⁵

³² ADEPT Flood Response Plan Guidance: https://www.adeptnet.org.uk/documents/adeptea-flood-risk-emergency-plans-new-development

³³ https://naturalresources.wales/flooding/preparing-for-a-flood/?lang=en

³⁴

https://maps.cyfoethnaturiolcymru.gov.uk/Html5Viewer/Index.html?configBase=https://maps.cyfoethnaturiolcymru.gov.uk/Geocortex/Essentials/REST/sites/Flood_Risk/viewers/Flood_Risk/virtualdirectory/Resources/Config/Default&layerTheme=0

³⁵ https://weather.metoffice.gov.uk/warnings-and-advice/seasonal-advice/when-and-why-do-we-issue-warnings

Table 9-1 Flood codes and meanings

Flood code	What it means	What to do
	Flooding is possible, be prepared	Be prepared to act on your flood plan. Prepare a flood kit of essential items.
Flood Alert		Monitor local water levels and the flood
		forecast on our website.
	Flooding is expected, immediate	Move family, pets and valuables to a safe place.
Flood Warning	action is required	Turn off gas, electricity and water supplies if safe to do so.
		Put flood protection equipment in place.
	Severe flooding and danger to life	Stay in a safe place with a means of escape.
Severe Flood Warning		Be ready should you need to evacuate from your home.
		Co-operate with the emergency services.
		Call 999 if you are in immediate danger.
Warning no longer in force	Warning has been removed in the last 24 hours	Be careful. Floodwater may still be around for several days and could be contaminated
		If you've been flooded, ring your insurance company as soon as possible.

More information on how to register for flood alerts and warnings is available from the NRW website at: https://naturalresources.wales/flooding/sign-up-to-receive-flood-warnings

Alternatively, occupants can register by calling the 24-hour Floodline on: 0345 988 1188

It should be noted that the flood warning service is continually reviewed. It is recommended that site occupants check annually that they are signed up to receive the correct warnings by checking the website above.

10 Working With Natural Processes and Natural Flood Management

It should be noted that there are several terms for measures involving natural solutions to managing flood and coastal erosion risk, for clarity these are:

- Nature Based Solutions (NBS) broad terms referring to the sustainable management and use of natural features to tackle socio-environmental challenges.
- 2. Working With Natural Processes (WWNP)— terms for reducing flood and coastal erosion risk through implementing measures to protect, restore and emulate the natural functions of catchments, floodplains, rivers and the coast.
- 3. Natural Flood Management (NFM) Use of natural processes to reduce the risk of flooding and coastal erosion.

This SFCA will focus on specific measures that can be used to manage flood risk and will refer to the use of WWNP and NFM in the Monmouthshire authority area. This section will provide an overview of different WWNP/ NFM measures that can be implemented and will provide a review of the WWNP mapping to understand the potential for using these techniques.

WWNP aims to protect, restore and emulate the natural functions of catchments, floodplains, rivers, and the coast. This includes the use of NFM techniques. NRW has worked in partnership with the Welsh Government, Department for Environmental Food & Rural Affairs (DEFRA) and other public bodies to build an evidence base³⁶ setting out the current state of evidence for WWNP and outlining the effectiveness of different measures with regard to managing flood risk and delivering other benefits. Further research has been undertaken since the publication of this evidence report, leading to the development of knowledge and understanding around WWNP.

Nature-based solutions such as NFM are part of WWNP and can be used to retain water and attenuate flows that can otherwise contribute to flooding. Installation of temporary detention features such as leaky dams and large woody debris in watercourses across a catchment can help mitigate flood risk and improve the capability of the catchment to manage more extreme events.

NFM techniques can also involve restoring floodplains and river channels to a more natural state and retaining water in catchment headlands. These techniques often deliver multiple benefits such as habitat creation and improving water quality, making them sustainable solutions. Reference should be made to the CIRIA Natural Flood Management Manual (C802F)³⁷. NFM techniques can include:

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

³⁶ https://www.gov.uk/flo.ciria.org/ItemDetail?iProductCode=C802F&Category=FREEPUBS&WebsiteKey=a054c7b1-c241-4dd4-9ec1-38afd4a55683

³⁷ https://www.ciria.org/ItemDetail?iProductCode=C802F&Category=FREEPUBS&WebsiteKey=a054c7b1-c241-4dd4-9ec1-38afd4a55683

- Floodplain restoration and reconnection
- Re-naturalising rivers and removing redundant in-channel structures
- Installing run-off attenuation features such as large woody debris and leaky dams
- Planting riparian or catchment woodlands
- Land and soil management measures
- Restoring moorland, peatland, and woodland habitats in the headwaters
- Restoration and management of sand dunes, saltmarshes and mudflats

Table 10-1 Examples of WWNP and NFM³⁸

10.1.1 Working with Natural Processes in Wales

Policy 8 of Future Wales – the National Plan 2040 demonstrates the Welsh Government's support for nature-based solutions. The National FCERM Strategy for Wales³⁹ emphasises

³⁸

https://assets.publishing.service.gov.uk/media/6036c730d3bf7f0aac939a47/Working_with_natural_processes_one_page_summaries.pdf 39 https://gov.wales/national-strategy-flood-and-coastal-erosion-risk-management-wales

the use of NFM and WWNP as a sustainable, catchment based approach to managing flood risk in a more sustainable way.

The new TAN-15 also acknowledges that natural flood and water management schemes can provide opportunities to slow and store water, along with appropriate land management. It recognises that this will become increasingly important with regard to the impacts of climate change and that options such as managed coastal realignment and floodplain restoration can contribute to the sustainable management of natural resources, mitigate future flood risk, and protect and enhance natural heritage.

The Minister for Environmental and Rural Affairs announced in a statement of 24 January 2025 that following the NFM Pilot Programme (2020-2023) and the subsequent NFM Accelerator (2023-2025), Welsh Government have secured £2m capital funding for an additional 12 months, with future funding still being explored⁴⁰. Welsh Government aims to further accelerate the delivery of NFM by continuing to offer 100% funding for the delivery of NFM schemes within this programme.

10.1.2 Working with Natural Processes for new development

Developments can provide opportunities to work with natural processes of catchments, floodplains, rivers, and the coast to reduce flood and erosion risk, benefit the natural environment, and reduce the costs of schemes. Natural flood management requires integrated catchment management and involves those who use and shape the land. It also requires partnership working with neighbouring authorities, organisations and water management bodies.

It should be acknowledged that the use of NFM/WWNP techniques in isolation are unlikely to fundamentally alter a flood risk at a given site. However, when implemented on a catchment scale NFM/WWNP may be effective in combination with other measures.

Local Authorities can set their own local policies on the use of nature based solutions; this could be done through an LDP or through the Local Flood Risk Management Strategy.

Conventional flood prevention schemes may be preferred, but consideration of 'renaturalising' rivers and land upstream could provide cost efficiencies as well as considering multiple sources of flood risk; for example, reducing peak flows upstream such as through felling trees into streams or building earth banks to capture runoff, could be cheaper and smaller-scale measures than implementing flood walls for example. It should be noted that in some locations traditional flood defence schemes may be required where conventional schemes are most appropriate; however, WWNP can and should complement conventional schemes where possible.

_

⁴⁰ https://www.gov.wales/natural-flood-management-guidance-undertake-natural-flood-management-works-html

10.1.3 Working with Natural Processes Opportunity Mapping

As part of the WWNP evidence base, opportunity mapping⁴¹ has been developed to help identify opportunities for WWNP and NFM. The maps are intended to be used alongside the Working with Natural Processes Evidence Directory to help RMAs, developers, and planners think about the types of measures that may work best and potentially the best place to locate them. These maps require further work and development; however, initially, they can be used as a starting point for consideration towards WWNP opportunities.

- The maps cover a range of different WWNP measures, including:
- Floodplain reconnection
- Run-off attenuation and gully blocking
- Woodland planting covering, floodplain planting, riparian planting, and wider catchment woodland

The WWNP maps are based entirely on open data and highlight the potential for WWNP derived from national river, sea, and surface water flood risk NRW datasets. As such, further work and studies would still be required to support the use of NFM at a particular location and the understanding of WWNP potential should be supplemented by local knowledge. The maps also do not cover all measures for working with natural processes, and users may wish to refer to other relevant information sources when identifying areas of opportunity.

10.1.4 Using the Working with Natural Processes opportunity mapping

Floodplain reconnection map

The floodplain reconnection map identifies areas of the floodplain that have become disconnected from their river and are no longer capable of, or have a reduced ability to, store water during times of flood. Areas suitable for floodplain reconnection tend to be rural areas at low risk of flooding (using the NRW Risk of Flooding from Rivers and Seas map) close to a watercourse.

Run-off attenuation features and gully blocking map

The run-off attenuation features map identifies areas where surface water naturally flows or accumulates and could help identify locations to temporarily hold back and intercept the flow using soft engineering approaches.

The run-off attenuation feature locations identified on the mapping are based on the premise that areas of high flow accumulation in the Surface Water Flooding maps (from NRW mapping) are areas where the run-off hydrograph may be influenced by temporary storage (if designed correctly).

QEW-JBA-XX-XX-RP-Z-0001-D3-C05-Monmouthshire SFCA

⁴¹ https://naturalprocesses.jbahosting.com/

The gully blocking potential is based on run-off attenuation features on steeper ground with a gradient >6%. These are areas where leaky barriers may be more beneficial than a deepened pond, raised bund, or grip blocking.

10.1.5 Tree Planting

Catchment woodland can intercept, slow, store, and filter water. This can help reduce flood peaks, flood flows (from 3 to 70%) and flood frequency.

Interventions involving tree planting seek to:

- Slow overland flow through the development of rougher ground surfaces
- Largely eliminate overland flow through enhanced infiltration rates via increased topsoil permeability and enhanced soil drying from enhanced evapotranspiration
- Remove water from the streamflow generating system via enhanced wet canopy evaporation ('interception loss') and enhanced transpiration.

10.1.6 Areas of working with Natural Processes in Monmouthshire

Maps showing the WWNP is provided in Appendix A. It should be noted that the mapping is broadscale therefore it should be used as a guide for areas where WWNP may be possible. Due to the broadscale nature of the mapping not all areas identified may be suitable for use with WWNP i.e. there is an existing development in the area.

The maps show very small areas across Monmouthshire are suitable for runoff attenuation features during the 1% AEP flood event.

Areas suitable for Riparian Woodland Planting Potential are present across the county particularly round the tributaries that flow into the River Usk and River Wye.

Large areas of Monmouthshire have been identified as being suitable for wider catchment woodland planting. The majority of the areas identified as suitable are found the outskirts of Abergavenny, Penperlleni and Llanarth and cover significant areas.

Due to the wide flat catchments in Monmouthshire, there are several extensive areas that have been identified as suitable for Floodplain Woodland Planting Potential. These include areas around the River Usk in Abergavenny and Llangattock as well as land between Usk and Newbridge on Usk. Land surrounding Monmouth is also considered suitable for floodplain woodland planting.

11 Summary

This SFCA has been undertaken to inform the Monmouthshire Replacement LDP (2018-2033) and will enhance the understanding of flood risk, as well as inform the development of policies to support land allocation decisions.

The SFCA has been carried out in accordance with the Welsh Government's development planning guidance, Planning Policy Wales Edition 12 (PPW), Technical Advice Note 15: Development, Flooding and Coastal Erosion (TAN-15) (2025), and Welsh Government Flood Consequences Assessment (FCA) Climate Change allowances. The requirements of TAN-15 are outlined in this report and supplemented where appropriate with locally specific requirements and guidance.

The report provides a summary of the risk of flooding from all sources, identifying that flooding from rivers, tidal and surface water, as well as small watercourse flooding, pose the most significant risk to established settlements in the Monmouthshire LPA area.

Further guidance has been provided on the requirements of FCAs as well as methods to identify ways of mitigating flood risk where appropriate and identify opportunities to slow and store water through utilising WWNP/NFM techniques.

An appraisal of 9 proposed allocations in the Replacement LDP has been undertaken to identify the risk of flooding. The appraisal identifies the risk of flooding to the site from all sources and indicates whether the development site would be likely to comply with the criteria in Sections 10 and 11 of TAN-15. Recommendations on how the risk of flooding can be mitigated are also made. Sites included within the appraisal process are those which have been identified as at some level of risk following initial flood risk screening. If a site has not been reviewed within the appraisal process, it has been screened as acceptable in principle on the basis of the Flood Map for Planning.

This report also provides an overview of policy and guidance for planners, developers, and other stakeholders. Recommendations for local approaches to flood risk have been made throughout the report, which will inform the development of the Replacement LDP policies and land allocation decisions.

A Flood Risk Mapping

B Flood Risk Appraisal

www.jbaconsulting.com

Our Offices

Limerick

Romania

Bristol Newcastle Coleshill Newport Cork Peterborough Doncaster Portsmouth Dublin Saltaire Edinburgh Skipton Exeter Tadcaster Thirsk Glasgow Haywards Heath Wallingford Leeds Warrington

JBA Consulting JBA Risk Management JBA Global Resilience JBA Risk Mekong Modelling Management Inc Ireland 🔏 UK USA

JBA Consulting Ireland

JBA Consult Europe

Cambodia_

Management Pte Ltd

Singapore

Australia

JBPacific

0-0-0

Associates

JBA Risk

Registered Office

1 Broughton Park Old Lane North **Broughton** SKIPTON North Yorkshire BD23 3FD **United Kingdom**

+44(0) 1756 799919 info@jbaconsulting.com www.jbaconsulting.com

Follow us on

Jeremy Benn **Associates Limited** Registered in England 3246693

JBA Group Ltd is certified to ISO 9001:2015 ISO 14001:2015 ISO 27001:2022 ISO 45001:2018

